В трапеции меньшая диагональ перпендикулярна основаниям сумма острых углов равна 90º. Найдите площадь трапеции, если ее основания 2 и 18. --------- Диагональ ВD делит трапецию на два прямоугольных треугольника. Сумма острых углов АВСD равна 90º ⇒ ∠ВАD+∠ВСD=90º В прямоугольном ∆ АВD ∠ВАD+∠АВD=90º ⇒ ∠АВD= ∠ВСD ⇒ прямоугольные ∆ АВD и ∆ ВСD подобны по равному острому углу. Из подобия треугольников следует отношение: АD:ВD=ВD:ВС ВD²=АD*ВС=18*2=36 ВD=6 ВD- высота трапеции S=BD*(AD+BC):2 S=6*(18+2):2=60 (ед. площади)
Объяснение:
1. Точка Т – середина отрезка МР. Найдите координаты точки Р,
если Т (-2;4) и М (-6; -7).
2. a)АВ – диаметр окружности с центром О. Найдите координаты центра окружности, если А (9; -2) и В (-1;-6).
b)Запишите уравнение окружности, используя условия пункта а).
3. Дано: A(2;4)Bина отрезка МР. Найдите координаты точки Р,
если Т (-2;4) и М (-6; -7).
2. a)АВ – диаметр окружности с центром О. Найдите координаты центра окружности, если А (9; -2) и В (-1;-6).
b)Запишите уравнение окружности, используя условия пункта а).
3Найдите координаты точки Р,
если Т (-2;4) и М (-6; -7).
2. a)АВ – диаметр окружности с центром О. Найдите координаты центра окружности, если А (9; -2) и В (-1;-6).
b)Запишите уравнение окружности, используя условия пункта а).
3. Дано: A(2;4)B(-2;3)C(-1;5) Напишите уравнение медианы ВМ.
Т (-2;4) и М (-6; -7).
2. a)АВ – диаметр окружности с центром О. Найдите координаты центра одите координаты точки Р,
если Т (-2;4) и М (-6; -7).
2. a)АВ – диаметр окружности с центром О. Найдите координаты центра окружности, если А (9; -2) и В (-1;-6).
b)Запишите уравнение окружности, используя условия пункта а).
3. Дано: A(2;4)B(-2;3)C(-1;5) Напишите уравнение медианы ВМ.
4.Точки А(-3;-4), В(5;-4), С(5;8), D(-3;-1) – вершины прямоугкружности, если А (9; -2) и В (-1;-6).
b)Запишите уравнение окружности, используя условия пункта а).
3. Дано: A(2;4)B(-2;3)C(-1;5) Напишите уравнение медианы ВМ.
4.Точки А(-3;-4), В(5;-4
4.Точки А(-3;-4), В(5;-4), С(5;8), D(-3;-1) – вершины прямоугольной трапеции с основаниями ВC . Дано: A(2;4)B(-2;3)C(-1;5) Напишите уравнение медианы ВМ.
4.Точки А(-3;-4), В(5;-4), С(5;8), D(-3;-1) – вершины прямоугольной трапеции с основаниями ВC и АD, А(-2;3)C(-1;5) Напишите уравнение медианы В
---------
Диагональ ВD делит трапецию на два прямоугольных треугольника.
Сумма острых углов АВСD равна 90º ⇒
∠ВАD+∠ВСD=90º
В прямоугольном ∆ АВD
∠ВАD+∠АВD=90º ⇒
∠АВD= ∠ВСD ⇒
прямоугольные ∆ АВD и ∆ ВСD подобны по равному острому углу.
Из подобия треугольников следует отношение:
АD:ВD=ВD:ВС
ВD²=АD*ВС=18*2=36
ВD=6
ВD- высота трапеции
S=BD*(AD+BC):2
S=6*(18+2):2=60 (ед. площади)