8. Мальчики смастерили 2 стола с крышками одинаковой площади. Первый стол был квадратный, шириной 60 см, а второй стол прямоугольный, длиной 80 см. Найдите периметры и площади столов.
Проведем произвольную прямую а. Отметим на ней точку В.
1) Из вершины В данного угла раствором циркуля, равным длине ВК, делаем насечки М и Е на сторонах угла.
2) Соеденим точки М и Е.
3) Отложим на прямой а от В отрезок BК, равный ВМ=биссектрисе ВК.
4) Из точки К проведем полуокружность радиусом, равным отрезку МЕ
5) От В раствором циркуля, равным ВЕ, проведем полуокружность до пересечения с полуокружностью из К
6) Через точку пересечения полуокружностей проведем луч ВЕ'. Данный по условию угол построен.
7) Точно так же построим угол, равный построенному, в другой полуплоскости от прямой а. Получившийся угол равен двум углам ВКС ( в котором ВК - биссектриса)
8) Из К, как из центра, проведем полуокружность радиусом. равным отрезку СК. Точку пересечения с лучом ВЕ' обозначим С.
9) От С через К проведем прямую до пересечения со второй стороной построенного угла ( которая по другую сторону от а).Точку пересечения обозначим А.
10) Треугольник АВС построен. В нем ВК - биссектриса заданной длины, угол СВА=2 угла СВК, КС равен заданному отрезку СК.
Построение:
Проведем произвольную прямую а. Отметим на ней точку В.
1) Из вершины В данного угла раствором циркуля, равным длине ВК, делаем насечки М и Е на сторонах угла.
2) Соеденим точки М и Е.
3) Отложим на прямой а от В отрезок BК, равный ВМ=биссектрисе ВК.
4) Из точки К проведем полуокружность радиусом, равным отрезку МЕ
5) От В раствором циркуля, равным ВЕ, проведем полуокружность до пересечения с полуокружностью из К
6) Через точку пересечения полуокружностей проведем луч ВЕ'. Данный по условию угол построен.
7) Точно так же построим угол, равный построенному, в другой полуплоскости от прямой а. Получившийся угол равен двум углам ВКС ( в котором ВК - биссектриса)
8) Из К, как из центра, проведем полуокружность радиусом. равным отрезку СК. Точку пересечения с лучом ВЕ' обозначим С.
9) От С через К проведем прямую до пересечения со второй стороной построенного угла ( которая по другую сторону от а).Точку пересечения обозначим А.
10) Треугольник АВС построен. В нем ВК - биссектриса заданной длины, угол СВА=2 угла СВК, КС равен заданному отрезку СК.
AD принадлежит плоскости альфа => BC || плоскости альфа
если С1 --- проекция точки С (СС1 _|_ плоскости альфа),
В1 --- проекция точки В (ВВ1 _|_ плоскости альфа), то СС1В1В --- прямоугольник
С1В1 = СВ = 8
искомое расстояние x=BB1=CC1 --- катет прямоугольного треугольника...
Известно, что: Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.
DB^2 + AC^2 = 2(8^2+10^2)
x^2 + DB1^2 = DB^2 => DB^2 = x^2 + 12^2
x^2 + AC1^2 = AC^2 => AC^2 = x^2 + 6^2
2(8^2+10^2) = 2*x^2 + 12^2 + 6^2
2*x^2 = 148
x^2 = 74
x = V74