8. Найдите площадь треугольника по трем сторонам: 1) 39 cm, 42 cm, 45 cm; 2) 35 cm, 29 cm, 8 cm; 3) 20 cm, 20 cm, 32 cm. 9. Какую часть составляет площадь S заштрихованной части от пло- шади параллелограмма ABCD на рисунке 13?
5. при двух параллельных и секущей образуется односторонние углы которые в сумме дают 180° в нашем случае эти два когда это угол 1 и угол 2.
угол 1 составляет 60%,(тоесть 0,6) от угла два.
если угол 2-х то угол 1- 0,6х, а из сумма 180°. составим уравнение
х+0,6х=180
1,6х=180
х=112,5- это второй угол
первый угол равен 0,6х
тоесть 0,6×112,5=67,5
ответ: угол1=67,5. угол2=112,5
6. угол NKP и угол N односторонние углы. тоесть их сумма равен 180. известно что NKP=120°, тогда чтобы найти угол N мы должны 180-120=60° это угол N
угол М это третий угол треугольника. Нам известно что уголК равна 90°( по изображению) а угол Nравна 60°. сумма углов треугольника равен 180° чтобы найти третий угол треугольника нам нужно 180-60-90=30°
Интересно, где Вы учитесь, если такие задачи задают. Вот решение этой задачи без теории (вывод формул ищите в учебнике или в записях занятий) Мне не нравится обозначение радиусов, я их буду обозначать r1, r2, r3; Окружность, вписанная в исходный треугольник (её радиус я обозначу просто r), является вневписанной для каждого из трех отсеченных. Если построить вневписанные окружности к исходному треугольнику, с радиусами ρ1, ρ2, ρ3; то очевидно (в силу подобия отсеченных треугольников исходному) будут выполнены пропорции ρ1/r = r/r1; и то же самое для двух других. то есть ρ1 = r^2/r1; ρ2 = r^2/r2; ρ3 = r^2/r3; Остается подставить это в известные соотношения 1/r = 1/ρ1 + 1/ρ2 + 1/ρ3; то есть r = r1 + r2 + r3; и 4R = ρ1 + ρ2 + ρ3 - r; где R - радиус описанной окружности. то есть 4R = r^2*(1/r1 + 1/r2 + 1/r3 - 1/r); r = r1 + r2 + r3; это все. Я бы конечно мог привести вывод этих формул, но Вам бы никогда не задали эту задачу, если бы не выводили их на занятиях. К примеру, площадь S исходного треугольника равна S = (p - a)*ρ1 = (p - b)*ρ2 = (p - c)*ρ3 = p*r; откуда 1/ρ1 + 1/ρ2 + 1/ρ3 = (p - a)/S + (p - b)/S + ( p - c)/2 = (3p - a - b - c)/S = p/S = 1/r; Вывод формулы для R намного сложнее технически, но по сути - то же самое.
5. при двух параллельных и секущей образуется односторонние углы которые в сумме дают 180° в нашем случае эти два когда это угол 1 и угол 2.
угол 1 составляет 60%,(тоесть 0,6) от угла два.
если угол 2-х то угол 1- 0,6х, а из сумма 180°. составим уравнение
х+0,6х=180
1,6х=180
х=112,5- это второй угол
первый угол равен 0,6х
тоесть 0,6×112,5=67,5
ответ: угол1=67,5. угол2=112,5
6. угол NKP и угол N односторонние углы. тоесть их сумма равен 180. известно что NKP=120°, тогда чтобы найти угол N мы должны 180-120=60° это угол N
угол М это третий угол треугольника. Нам известно что уголК равна 90°( по изображению) а угол Nравна 60°. сумма углов треугольника равен 180° чтобы найти третий угол треугольника нам нужно 180-60-90=30°
ответ: уголN=60°. угол М равен 30°
Мне не нравится обозначение радиусов, я их буду обозначать r1, r2, r3;
Окружность, вписанная в исходный треугольник (её радиус я обозначу просто r), является вневписанной для каждого из трех отсеченных. Если построить вневписанные окружности к исходному треугольнику, с радиусами ρ1, ρ2, ρ3; то очевидно (в силу подобия отсеченных треугольников исходному) будут выполнены пропорции
ρ1/r = r/r1; и то же самое для двух других.
то есть ρ1 = r^2/r1; ρ2 = r^2/r2; ρ3 = r^2/r3;
Остается подставить это в известные соотношения
1/r = 1/ρ1 + 1/ρ2 + 1/ρ3; то есть r = r1 + r2 + r3;
и
4R = ρ1 + ρ2 + ρ3 - r; где R - радиус описанной окружности.
то есть 4R = r^2*(1/r1 + 1/r2 + 1/r3 - 1/r); r = r1 + r2 + r3;
это все.
Я бы конечно мог привести вывод этих формул, но Вам бы никогда не задали эту задачу, если бы не выводили их на занятиях.
К примеру, площадь S исходного треугольника равна
S = (p - a)*ρ1 = (p - b)*ρ2 = (p - c)*ρ3 = p*r; откуда
1/ρ1 + 1/ρ2 + 1/ρ3 = (p - a)/S + (p - b)/S + ( p - c)/2 = (3p - a - b - c)/S = p/S = 1/r;
Вывод формулы для R намного сложнее технически, но по сути - то же самое.