Если соединить концы хорды с центром окружности, то получим равнобедренный прямоугольный треугольник с острыми углами по 45 градусов. Т.к. треугольник равнобедренный, то прямая от центра окружности до точки касания малой окружности и хорды равна половине хорды, то это будет 9 - радиус малой окружности, а радиус большой по теореме Пифагора: 9*9+9*9= корень из 162 - радиус большой окружности, а значит, мы всё знаем : Формула площади кольца: пи(Rбольшой^2-Rмалой^2)=пи*((корень из 162) в квадрате) - 9*9)= пи*(162-81)=пи*81
пи(Rбольшой^2-Rмалой^2)=пи*((корень из 162) в квадрате) - 9*9)= пи*(162-81)=пи*81
A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает