Отрезки касательных, проведенных к окружности равны. Пусть дан тр-к АВС, т. касания стороны ВС с окружностью т.Д; стороны АС - т.Е; стороны АВ - т.К; по условию АС=29 см; ВД=1 см; ДС=24 см; рассм. т.С, из нее проведены касательные к окружности СД и СЕ, они равны 24 см; АС=29 см; значит АЕ=29-24=5 см; рассм. касательные, проведенные к окружности из т.А - АЕ=АК=5 см; рассм. касательные, проведенные из т.В - ВК=ВД=1см; отсюда АВ=АК+ВК=5+1=6 см; СВ=24+1=25 см; и АС=29 см; значит Р=6+25+29=60см - это ответ.
Пусть дан тр-к АВС, т. касания стороны ВС с окружностью т.Д;
стороны АС - т.Е; стороны АВ - т.К; по условию АС=29 см; ВД=1 см;
ДС=24 см;
рассм. т.С, из нее проведены касательные к окружности СД и СЕ, они равны 24 см; АС=29 см; значит АЕ=29-24=5 см;
рассм. касательные, проведенные к окружности из т.А - АЕ=АК=5 см;
рассм. касательные, проведенные из т.В - ВК=ВД=1см;
отсюда АВ=АК+ВК=5+1=6 см; СВ=24+1=25 см; и АС=29 см; значит
Р=6+25+29=60см - это ответ.
1 задача:
Доведения:
Рассмотрим ΔABD и ΔАВС
1) АВ = ВС (ΔАВС - равнобедренный с основанием АС)
2) AD = DC (ΔАВС - равнобедренный с основанием АС)
3) BD - общая.
Итак, ΔABD = ΔСВС за III признаком piвностi треугольников.
3 этого следует, что ∟ABD = ∟CBD. Тогда BD - биссектриса ∟АВС.
В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой, поэтому АЕ = ЕС.
2 задача
Рассмотрим ΔАВС - равнобедренный (АВ = ВС),
тогда ∟А = ∟C (свойство равнобедренного треугольника).
Рассмотрим ΔАВК и ΔСВМ.
1) АВ = ВС (по условию)
2) ∟А = ∟C (ΔАВС - равнобедренный)
3) ∟ABK = ∟CBM (по условию).
Итак, ΔАВК = ΔСВМ за II признаком piвностi треугольников.
3 этого следует pавность всех соответствующих Элементы, а именно ВМ = ВК.