Минут 5 ломал голову, с чего вообще начать) Потом вспомнил про подобие треугольников.
1. Проведём отрезки BD и AC (см. рисунок). Треугольники, образованные таким образом, будут подобными, поскольку у них равные углы при вершине K, а также угол C равен углу B (потому что они опираются на одну и ту же дугу), из чего по первому признаку подобия треугольников следует их подобие.
2. Значит, стороны треугольников пропорциональны. Очевидно, что если их сумма в два раза больше суммы другого треугольника, то и стороны тоже в два раза больше:
1. Проведём отрезки BD и AC (см. рисунок). Треугольники, образованные таким образом, будут подобными, поскольку у них равные углы при вершине K, а также угол C равен углу B (потому что они опираются на одну и ту же дугу), из чего по первому признаку подобия треугольников следует их подобие.
2. Значит, стороны треугольников пропорциональны. Очевидно, что если их сумма в два раза больше суммы другого треугольника, то и стороны тоже в два раза больше:
3. Их произведение
(ед.)
Объяснение:
Дано: ΔАВС - прямоугольный.
АС = 3; АВ = 4; ВС = 5.
Окр. O,r - вписанная.
ЕК ⊥ ВС.
Найти: ЕК.
1. Рассмотрим АМОР.
∠А = 90° (условие);
Радиус, проведенный в точку касания перпендикулярен касательной.⇒ ОР ⊥ АС; ОМ ⊥ АВ.
Если две прямые перпендикулярны третьей, то они параллельны между собой.⇒ АМ || АР; АР || МО.
⇒ АМОР - прямоугольник.
Противоположные стороны прямоугольника равны.⇒ АМ = АР; АР = МО.
МО = АР = r ⇒ АМ = АР = АР = МО.
⇒ АМОР - квадрат.
2. Найдем r по формуле:
, где a и b - катеты, с - гипотенуза.
⇒ АМ = АР = АР = МО=1
3. Рассмотрим ΔАВС и ΔМВН - прямоугольные.
∠В - общий;
⇒ ΔАВС ~ ΔМВН (по двум углам).
Составим отношение сходственных сторон:
4. Рассмотрим ΔЕМО и ΔОКН - прямоугольные.
МО = ОК = r
∠1 = ∠2 (вертикальные)
⇒ ΔЕМО = ΔОКН (по катету и острому углу)
⇒ ЕО = ОН (как соответственные элементы)
МО +ОН = ЕО + ОК = МН =
⇒