8класс мерзляк: отрезок mn, проведённый через точку пересечению диагоналей неравнобокий трапеции abcd, параллелен ее основаниям (рис.171). сколько пар подобных треугольников изображено на рисунке? необходимо, решение. или объяснение.
Сумма 4-х углов четырехугольника равна 360. Поскольку в паралелограмме противоположные углы равны, значит сумма двух соседних углов равна 180. Отнимаем 46 и делим на 2, получаем один угол 67, второй (+46) равен 113.
можно так:
Такие углы не могут быть противолежащими, так как они не равны. Значит, они прилежащие и их сумма равна 180°. Пусть один из углов равен х, тогда другой равен х+46°, по условию. Следовательно х+(х+46)=180
Если достаточно координат концов лучей звезды, то такая задача аналогична задаче поворота отрезка вокруг точки на заданный угол. Для пятиконечной звезды угол равен 72 градуса. Поместим центр окружности, в которую вписана звезда, в начало координат. Пусть обозначим её точкой А (0;0). Верхняя вершина звезды - точка В (0; R) - R задаётся координатой "у" точки В. Далее по формулам (против часовой стрелки с плюсом, против - с минусом) указываем угол поворота. X = x1+(x2-x1)*cos(A)-(y2-y1)*sin(A). Y = y1+(x2-x1)*sin(A)+(y2-y1)*cos(A).
Сумма 4-х углов четырехугольника равна 360. Поскольку в паралелограмме противоположные углы равны, значит сумма двух соседних углов равна 180. Отнимаем 46 и делим на 2, получаем один угол 67, второй (+46) равен 113.
можно так:
Такие углы не могут быть противолежащими, так как они не равны. Значит, они прилежащие и их сумма равна 180°. Пусть один из углов равен х, тогда другой равен х+46°, по условию. Следовательно х+(х+46)=180
2х+46=180
2х=180-46
2х=134
х=67-первый,а второй х+46°=67+46=113 градусов
Для пятиконечной звезды угол равен 72 градуса.
Поместим центр окружности, в которую вписана звезда, в начало координат.
Пусть обозначим её точкой А (0;0).
Верхняя вершина звезды - точка В (0; R) - R задаётся координатой "у" точки В.
Далее по формулам (против часовой стрелки с плюсом, против - с минусом) указываем угол поворота.
X = x1+(x2-x1)*cos(A)-(y2-y1)*sin(A).
Y = y1+(x2-x1)*sin(A)+(y2-y1)*cos(A).
Для примера в приложении радиус дан 5.