Геометрические фигуры в архитектуре Ни один из видов искусств так тесно не связан с геометрией как архитектура. Ле Корбюзье считал геометрию тем замечательным инструментом, который позволяет установить порядок в пространстве. Фигуры, которые он упоминает, являются теми математическими моделями, на базе которых строятся архитектурные формы. Чаще всего в архитектурном сооружении сочетаются различные геометрические фигуры. Например, в башне Московского кремля в основании можно увидеть прямой параллелепипед, переходящий в средней части в фигуру, приближающуюся к цилиндру, завершается же она пирамидой. Конечно, можно говорить о соответствии архитектурных форм указанным геометрическим только приближенно, отвлекаясь от мелких деталей.
Доказывается, я так думаю, через равенство двух треугольников. Каждый треугольник образован основанием, наклонной стороной (бедром трапеции) и диагональю. Поскольку углы при основании равны - на то трапеция и равнобедренная, бёдра тоже тоже, а основание у треугольников - общая сторона, то треугольники равны (так как равны две стороны и угол между ними) . А если треугольники равны, то равны и их соответствующие третьи стороны - т. е. диагонали. Вот теперь посторой трапецию АВСД и запиши всё в мат. выражениях.
Чаще всего в архитектурном сооружении сочетаются различные геометрические фигуры. Например, в башне Московского кремля в основании можно увидеть прямой параллелепипед, переходящий в средней части в фигуру, приближающуюся к цилиндру, завершается же она пирамидой. Конечно, можно говорить о соответствии архитектурных форм указанным геометрическим только приближенно, отвлекаясь от мелких деталей.