9 9 из 10 A В четырехугольнике 21 — 40°, 22 = 30°, 23 = 1100 Докажите, что данный четырехугольник - параллелограмм. Решите задачу и прикрепите файл с решением. Выберите файл: Выберите файл файл не выбран
Для того, чтобы найти величину третьего внешнего угла треугольника мы прежде всего должны вспомнить чему равна сумма всех внешних углов треугольника.
Но прежде всего давайте посмотрим, что нам дано в условии. Итак, нам известно, что два внешних угла треугольника равны 120° и 160°.
Сумма внешних углов треугольника равна 360°. Для того, чтобы найти чему равен третий внешний угол треугольника мы должны из 360° вычесть сумму двух других углов треугольника.
AB == BC => <BAC = <C = (180-120)/2 = 30°.
Зная все углы, и основание равнобёдренного треугольника — формула вычисления боковой стороны такова:
<HBA = 180 - <ABC = 180-120 = 60°
<HAB = 90-60 = 30°.
<AHB = 90°.
Теорема о 30-градусном угле прямоугольного треугольника такова: катет, противолежащий углу 30-градусов — равен половине гипотенузы.
В нашем случае — гипотенуза треугольника AHB — сторона AB, которая равна: 8.1.
Тоесть: HB = AB/2 => HB = 8.1/2 = 4.05.
По теореме Пифагора:
Вывод: HA = 7.015.
Для того, чтобы найти величину третьего внешнего угла треугольника мы прежде всего должны вспомнить чему равна сумма всех внешних углов треугольника.
Но прежде всего давайте посмотрим, что нам дано в условии. Итак, нам известно, что два внешних угла треугольника равны 120° и 160°.
Сумма внешних углов треугольника равна 360°. Для того, чтобы найти чему равен третий внешний угол треугольника мы должны из 360° вычесть сумму двух других углов треугольника.
Давайте вычислим,
360° - (120° + 160°) = 360° - 280° = 80°.