9. а) После того, как со склада вывезли 290 мешков муки, в нем осталось 198 мешков муки. Сколько муки было вначале? б) Как была бы сформулирована задача, если в ней число 290 было неизвестным? Решите эту задачу.
Для того, чтобы все точки прямой a*x+b*y+c=0 находились на равных расстояниях от точек А и В, эта прямая должна быть перпендикулярна прямой АВ и проходить через середину отрезка АВ. Пусть x1 и y1 - координаты точки А, а x2 и y2 - координаты точки В; составим уравнение прямой АВ:
(x-x1)/(x2-x1)=(y-y1)/(y2-y1), (x-4)/(6-4)=(y-4)/(9-4), (x-4)/2=(y-4)/5, y=5/2*x-6. Отсюда следует, что угловой коэффициент этой прямой k1=5/2. А так как прямая a*x+b*y+c=0 перпендикулярна прямой АВ, то её угловой коэффициент k2=-1/k1=-2/5. Пусть точка С - середина отрезка АВ; найдём её координаты x3 и y3:
x3=(x1+x2)/2=5, y3=(y1+y2)/2=13/2. Теперь составляем уравнение прямой a*x+b*y+c=0: y-y3=k2*(x-x3), y-13/2=-2/5*(x-5), 4*x+10*y-85=0.
Нарисуйте сами. Пусть пирамида будет АВСТ. АВС- основание. Т- вершина. ТО-высота. треуг. ТОС прямоугольный так как ТО высота. В нем известен угол равный 60 и высота 4v3( противолежащий углу катет). ТС=ТВ=ТО/sin60=4v3/v3 ×2=8 OC=TC×cos60=8×1/2=4 так как пирамида правильная, значит в основании равносторонний треугольник.Рассмотрим основание ОС=АО=ВО=4. углы треугольника по 60гр. треуг. ВОС равнобедренный. прлаедем в нем высоту ОК. тогда ВОК прямоугольный. угол ОВК 30. ВК=ОВ×cos30=4×v3/2=2v3 ВК=КС тогда ВС=2ВК=4v3 -сторона основания. найдем апофему l. треуг. ТКВ-прямоугольный ТК апофема. по т. Пифагора ТК^2=ТВ^2-ВК^2=64-12=52 TК=v52=2v13 Sбок= p×l/2 p=3×4v3=12v3 Sбок=12v3 ×2v13 /2=12v39
ответ: 4*x+10*y-85=0.
Объяснение:
Для того, чтобы все точки прямой a*x+b*y+c=0 находились на равных расстояниях от точек А и В, эта прямая должна быть перпендикулярна прямой АВ и проходить через середину отрезка АВ. Пусть x1 и y1 - координаты точки А, а x2 и y2 - координаты точки В; составим уравнение прямой АВ:
(x-x1)/(x2-x1)=(y-y1)/(y2-y1), (x-4)/(6-4)=(y-4)/(9-4), (x-4)/2=(y-4)/5, y=5/2*x-6. Отсюда следует, что угловой коэффициент этой прямой k1=5/2. А так как прямая a*x+b*y+c=0 перпендикулярна прямой АВ, то её угловой коэффициент k2=-1/k1=-2/5. Пусть точка С - середина отрезка АВ; найдём её координаты x3 и y3:
x3=(x1+x2)/2=5, y3=(y1+y2)/2=13/2. Теперь составляем уравнение прямой a*x+b*y+c=0: y-y3=k2*(x-x3), y-13/2=-2/5*(x-5), 4*x+10*y-85=0.
OC=TC×cos60=8×1/2=4
так как пирамида правильная, значит в основании равносторонний треугольник.Рассмотрим основание ОС=АО=ВО=4. углы треугольника по 60гр. треуг. ВОС равнобедренный. прлаедем в нем высоту ОК. тогда ВОК прямоугольный. угол ОВК 30. ВК=ОВ×cos30=4×v3/2=2v3
ВК=КС
тогда ВС=2ВК=4v3 -сторона основания.
найдем апофему l.
треуг. ТКВ-прямоугольный ТК апофема. по т. Пифагора ТК^2=ТВ^2-ВК^2=64-12=52
TК=v52=2v13
Sбок= p×l/2
p=3×4v3=12v3
Sбок=12v3 ×2v13 /2=12v39