И. п семь тысяч семьсот семьдесят седьмая страница
Р. п семь тысяч семьсот семьдесят седьмой страницы
Д. п семь тысяч семьсот семьдесят седьмой странице
В. п семь тысяч семьсот семьдесят седьмую страницу
Т. п семь тысяч семьсот семьдесят седьмой страницей
П. п о семь тысяч семьсот семьдесят седьмой странице
И. п. пять десятых грамма
р. п пять десятых грамма
Д. п пять десятому грамму
в. п пять десятых грамма
т. п пять десятыми граммами
п. п о пять десятых грамма
и. п. сто друзей
р. п ста друзей
Д. п ста друзьям
в. п сто друзей
т. п ста друзьями
п. п о ста друзьях
и. п. сорок восемь городов
р. п сорока восьми городов
Д. п. сорока восьми городам
в. п. сорок восемь городов
т. п. сорока восьми городами
п. п о сорока восьми городов
ответ: 7,5 см
Объяснение:Дано: ABCD — трапеция,
AD∥ BC, MN — средняя линия,
MN∩AC=K, BC=8см, AD=15 см
Найти: MK, KN
Решение: 1) Рассмотрим треугольник ACD.
СN=DN и KN ∥ AD (так как по условию MN — средняя линия трапеции).
Следовательно, по теореме Фалеса, AK=KC.
Значит, KN — средняя линия треугольника ACD.⇒ KN=AD/2=15:2=7,5 см
2) Рассмотрим треугольник ABC.
АМ=MB (так как MN- средняя линия трапеции), AK=KC (по доказанному). Следовательно, MK — средняя линия треугольника ABC,⇒ МК=ВС/2=8:2=4 см.
KN>MK ⇒ ответ: 7,5 см
И. п семь тысяч семьсот семьдесят седьмая страница
Р. п семь тысяч семьсот семьдесят седьмой страницы
Д. п семь тысяч семьсот семьдесят седьмой странице
В. п семь тысяч семьсот семьдесят седьмую страницу
Т. п семь тысяч семьсот семьдесят седьмой страницей
П. п о семь тысяч семьсот семьдесят седьмой странице
И. п. пять десятых грамма
р. п пять десятых грамма
Д. п пять десятому грамму
в. п пять десятых грамма
т. п пять десятыми граммами
п. п о пять десятых грамма
и. п. сто друзей
р. п ста друзей
Д. п ста друзьям
в. п сто друзей
т. п ста друзьями
п. п о ста друзьях
и. п. сорок восемь городов
р. п сорока восьми городов
Д. п. сорока восьми городам
в. п. сорок восемь городов
т. п. сорока восьми городами
п. п о сорока восьми городов
ответ: 7,5 см
Объяснение:Дано: ABCD — трапеция,
AD∥ BC, MN — средняя линия,
MN∩AC=K, BC=8см, AD=15 см
Найти: MK, KN
Решение: 1) Рассмотрим треугольник ACD.
СN=DN и KN ∥ AD (так как по условию MN — средняя линия трапеции).
Следовательно, по теореме Фалеса, AK=KC.
Значит, KN — средняя линия треугольника ACD.⇒ KN=AD/2=15:2=7,5 см
2) Рассмотрим треугольник ABC.
АМ=MB (так как MN- средняя линия трапеции), AK=KC (по доказанному). Следовательно, MK — средняя линия треугольника ABC,⇒ МК=ВС/2=8:2=4 см.
KN>MK ⇒ ответ: 7,5 см