Отношение площадей треугольников имеющих равный (общий) угол равно произведению сторон содержащих этот угол. Доказательство этого факта приводить не буду. Желающие найдут (сделают :-) сами.
Рассмотрим, исходя из этого, треугольники АВС и AMP.
S(ABC)/S(AMP) = (AB*AC)/(AM*AP) (1)
Примем меньший отрезок АМ за 1 часть, соответственно MB будет 2 части.
Т.е. AB/AM = 3/1, AC/AP=3/2, подставим эти соотношения в выражение (1) для соотношения площадей треугольников получим:
S(ABC)/S(AMP) = (3*3)/(1*2) = 9/2, т.е. S(AMP)=(2/9)*S(ABC) =(2/9)*S
Можно провести аналогичные рассуждения для оставшихся треугольников, но учитывая соотношения сторон легко :-) заметить, что площади всех маленьких треугольников AMP, MBN, PNC равны и равны (2/9)*S.
Т.о. искомая площадь треугольника MNP будет равна
S-3*((2/9)*S) = 1/3 S, одной трети площади ABC, равной S.
И ещё. В чем смысл подобных задач? В том что ты учишься находить решение.
Сегодня это геометрия. Через годы это будут другие, более серьезные проблемы. На этом сайте ты научишься только списывать. Скачай себе
"Гордин-Планиметрия 7-9" и реши хотя бы одну задачу на соотношение площадей. Тогда я буду считать, что не зря потратил время, набивая всё это.
Отрезки диаметра имеют отношение 18:16=18х:16х. 18х+16х=34, 34х=34, х=1, значит отрезки равны 18 и 16. Диаметр, перпендикулярный хорде, делит её пополам, значит отрезки хорды относятся 1:1. По теореме о пересекающихся хордах (диаметр тоже хорда), если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды. Пусть отрезки хорды равны у, тогда у·у=18·16, у²=288, у=12√2, Хорда равна 2у=24√2. Площадь треугольника равна половине произведения основания на высоту. Если основанием считать хорду, то наибольшей высотой к ней, вписанной в данную окружность, является больший отрезок диагонали, значит площадь наибольшего треугольника с хордой в качестве основания, равна: S=24√2·18/2=216√2 (ед²) - это ответ.
М∈АВ
N∈BC
P∈AC
И делит стороны так, что
MB=2AM, NC=2BN, AP=2PC, т.е. соотношение1:2
Отношение площадей треугольников имеющих равный (общий) угол равно произведению сторон содержащих этот угол. Доказательство этого факта приводить не буду. Желающие найдут (сделают :-) сами.
Рассмотрим, исходя из этого, треугольники АВС и AMP.
S(ABC)/S(AMP) = (AB*AC)/(AM*AP) (1)
Примем меньший отрезок АМ за 1 часть, соответственно MB будет 2 части.
Т.е. AB/AM = 3/1, AC/AP=3/2, подставим эти соотношения в выражение (1) для соотношения площадей треугольников получим:
S(ABC)/S(AMP) = (3*3)/(1*2) = 9/2, т.е. S(AMP)=(2/9)*S(ABC) =(2/9)*S
Можно провести аналогичные рассуждения для оставшихся треугольников, но учитывая соотношения сторон легко :-) заметить, что площади всех маленьких треугольников AMP, MBN, PNC равны и равны (2/9)*S.
Т.о. искомая площадь треугольника MNP будет равна
S-3*((2/9)*S) = 1/3 S, одной трети площади ABC, равной S.
И ещё. В чем смысл подобных задач? В том что ты учишься находить решение.
Сегодня это геометрия. Через годы это будут другие, более серьезные проблемы. На этом сайте ты научишься только списывать. Скачай себе
"Гордин-Планиметрия 7-9" и реши хотя бы одну задачу на соотношение площадей. Тогда я буду считать, что не зря потратил время, набивая всё это.
С тебя "69" :-)
18х+16х=34,
34х=34,
х=1,
значит отрезки равны 18 и 16.
Диаметр, перпендикулярный хорде, делит её пополам, значит отрезки хорды относятся 1:1.
По теореме о пересекающихся хордах (диаметр тоже хорда), если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Пусть отрезки хорды равны у, тогда у·у=18·16,
у²=288,
у=12√2,
Хорда равна 2у=24√2.
Площадь треугольника равна половине произведения основания на высоту. Если основанием считать хорду, то наибольшей высотой к ней, вписанной в данную окружность, является больший отрезок диагонали, значит площадь наибольшего треугольника с хордой в качестве основания, равна:
S=24√2·18/2=216√2 (ед²) - это ответ.