9 клас геометрия Контрольна робота №2
Декартові координати на площині
І варіант
1. Знайдіть довжину відрізка MN і координати його
середини, якщо M(4;-5) N(-3;-1).
2. Складіть рівняння кола, яке проходить через точку
К(-2;-5) і має центр у точці О (1;-3).
3. Складіть рівняння прямої, яка проходить через точки
А(4;-1), В(2;3).
4. Знайдіть координати вершини С паралелограма ABCD,
якщо А(-3;-2), B(4;7), D(-2;-5).
5. Знайдіть координати точки, яка належить осі ординат і
рівновіддалена від точок M(2;-1), N(-3;7).
6. Довести, що точки А1;2), B(5;6), С(9;2), D(5;-2) є
вершинами квадрата.
ответ: 8 (ед.кв.)
Объяснение: по формуле Герона на самом деле не так сложно, как кажется... иррациональные множители постоянно "попадают" в формулу разность квадратов...
полупериметр =(V17+V41+4)/2
(напишу квадрат площади, т.к. с телефона нет возможности ввести формулы)
S^2=(V17+V41+4)*0.5*(V41+4-V17)*0.5*(V17+4-V41)*0.5*(V17+V41-4)*0.5 =
= (0.5)^4*((V41+4)^2-17)*(17+V(17*41)-4V17 + 4V17+4V41-16 - V(17*41)-41+4V41 =
= (0.5)^4*(41+8V41+16-17)*(8V41-40) =
= (0.5)^4*8^2*(V41-5)*(V41+5) =
= (64/16)*(41-25) = 4*16
S = 2*4 = 8
а если нарисовать треугольник на плоскости в системе координат, то очевидно, что сторона треугольника АВ=4, высота к этой стороне =4, площадь равна половине произведения стороны на высоту, проведенную к этой стороне = 4*4/2 = 8
В равнобедренном треугольнике углы при основании равны. ∠ВАС=∠ВСА
Обозначим данный треугольник АВС; О - точку пересечения прямых ЕТ||АВ и МК||АС.
АС секущая при ВА║ЕТ ⇒
∠ЕТС=∠ВАС как соответственные.
ЕТ секущая при МК║АС⇒
∠ЕОК=∠ЕТС как соответственные, следовательно, ∠ЕОК=∠ВАС.
ВС секущая при МК||АС⇒
∠ЕКО=∠ВСА, как соответственные. .
Следовательно, ∠ЕКО=∠ЕОК. что является признаком равнобедренного треугольника. ⇒
Треугольник ЕОК равнобедренный с углами при основании, которые равны углам при основании АС треугольника АВС.