Объяснение:
Дано:
Окружность с центром в точке О;
Дуга ED=60°;
ED=7 см.
Найти: длину окружности.
Проведем ЕО.
Угол ЕОF – центральный и опирается на дугу EF, тогда угол EOF=дуга EF=60°.
Угол DOE=180°–угол EOF=180°–60°=120° (смежные углы)
DO=EO так как радиусы равны, следовательно ∆ЕОD – равнобедренный с основанием ED.
Углы при основании равнобедренного треугольника равны, тогда угол DEO=угол ODE=(180°–угол DOE)÷2=(180°–120°)÷2=60°÷2=30°.
По теореме синусов в ∆EOD:
DO – радиус окружности.
C=2πr, где С – длина окружности; r – радиус окружности.
ответ: 24,2 см.
один из углов треугольника равен 2х, то второй=3х, а третий=4х.
Т.к. сумма углов треугольника=180 гр., то
2х+3х+4х=180
9х=180
х=20 (градусам)
Тогда,
1) первый угол = 2*20=40(гр.), а его внешний угол будет равным 180-40=140(гр)
2) второй угол=3*20=60 (гр.), а его внешний угол будет равным 180-60=120(гр)
3) третий угол=4*20=80(гр),, а его внешний угол будет равным 180-80=100(гр)
Следовательно внешние углы будут относится, как 140:120:100,
сокращая на 20 получим, что внешние углы треугольника относятся, как 7:6:5
Объяснение:
Дано:
Окружность с центром в точке О;
Дуга ED=60°;
ED=7 см.
Найти: длину окружности.
Проведем ЕО.
Угол ЕОF – центральный и опирается на дугу EF, тогда угол EOF=дуга EF=60°.
Угол DOE=180°–угол EOF=180°–60°=120° (смежные углы)
DO=EO так как радиусы равны, следовательно ∆ЕОD – равнобедренный с основанием ED.
Углы при основании равнобедренного треугольника равны, тогда угол DEO=угол ODE=(180°–угол DOE)÷2=(180°–120°)÷2=60°÷2=30°.
По теореме синусов в ∆EOD:
DO – радиус окружности.
C=2πr, где С – длина окружности; r – радиус окружности.
ответ: 24,2 см.
Объяснение:
один из углов треугольника равен 2х, то второй=3х, а третий=4х.
Т.к. сумма углов треугольника=180 гр., то
2х+3х+4х=180
9х=180
х=20 (градусам)
Тогда,
1) первый угол = 2*20=40(гр.), а его внешний угол будет равным 180-40=140(гр)
2) второй угол=3*20=60 (гр.), а его внешний угол будет равным 180-60=120(гр)
3) третий угол=4*20=80(гр),, а его внешний угол будет равным 180-80=100(гр)
Следовательно внешние углы будут относится, как 140:120:100,
сокращая на 20 получим, что внешние углы треугольника относятся, как 7:6:5