Пусть катеты равны а и b, гипотенуза равна с и высота, проведённая из вершины прямого угла, равна h.
Высота прямоугольного треугольника, проведённая из вершина прямого угла к гипотенузе, равна произведению катетов, делённому на гипотенузу прямоугольного треугольника.
Гипотенузу треугольника найдём по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) :
c² = a² + b² = 5² + 12² = 25 + 144 = 169
c = √c² = √169 = 13 см.
Тогда, по выше сказанному, h равно :
h = ab / c = 5 см*12 см / 13 см = 60 см²/13 см = 4 8/13 см.
треугольники подобные т.к. прямая, проведённая параллельно какой-либо стороне треугольника, отсекает от него треугольник, подобный данному а1 и а2 основания данного и отсеченного треугольников х высота отсеченного треугольника S1=(a1*2√2)/2=a1*√2 площадь данного треугольника S2=a2*x/2 площадь отсеченного треугольника S1/S2=2=(√2)² Отношение площадей 2 подобных треугольников равно квадрату коэффициента подобия √2 коэффициент подобия треугольников тогда: a1/а2=√2 a1=а2√2 (a1*√2)/(a2*x/2)=2 (а2√2*√2)/(a2*x/2)=2 (√2*√2)/(x/2)=2 4/x=2 x=2 высота отсеченного треугольника
Пусть катеты равны а и b, гипотенуза равна с и высота, проведённая из вершины прямого угла, равна h.
Высота прямоугольного треугольника, проведённая из вершина прямого угла к гипотенузе, равна произведению катетов, делённому на гипотенузу прямоугольного треугольника.Гипотенузу треугольника найдём по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) :
c² = a² + b² = 5² + 12² = 25 + 144 = 169
c = √c² = √169 = 13 см.
Тогда, по выше сказанному, h равно :
h = ab / c = 5 см*12 см / 13 см = 60 см²/13 см = 4 8/13 см.
4 8/13 см.
а1 и а2 основания данного и отсеченного треугольников
х высота отсеченного треугольника
S1=(a1*2√2)/2=a1*√2 площадь данного треугольника
S2=a2*x/2 площадь отсеченного треугольника
S1/S2=2=(√2)² Отношение площадей 2 подобных треугольников равно квадрату коэффициента подобия
√2 коэффициент подобия треугольников
тогда:
a1/а2=√2
a1=а2√2
(a1*√2)/(a2*x/2)=2
(а2√2*√2)/(a2*x/2)=2
(√2*√2)/(x/2)=2
4/x=2
x=2 высота отсеченного треугольника