Треугольник АВС, угол С=180-50-60=70°(по теореме о сумме углов треугольника)
Треугольник FED,угол F= 180-20-90=70°(по теореме о сумме углов треугольника)
Треугольник KML, угол К= L( по свойству углов равнобедренного треугольника) К=L=( 180-40):2=70°(По теореме о сумме углов треугольника)
Треугольник ONP, угол О=Р=20°, угол N= 180-20-20=140°(по теореме о сумме углов треугольника)
Треугольник АВС, угол А=В=(180-90):2=45°(по теореме о сумме углов треугольника)
Треугольник СDE, углы С= D=E=60°( по свойству углов равнлстороннего треугольника)
Треугольник АВС с внешним уголом, угол С(внутренний) =100°, угол АСЕ=80( по свойству внешних углов)
Треугольник АВС с внешним углом, угол А(внутренний) =30°, угол СВА)=80°
Треугольник АСD= с внешним углом, угол САD(внутренний) =40°(как смежные), угол САD=CDA=40°=>угол С =180-40-40=100°(по теореме о сумме углов треугольника)
Треугольник ЕСD с внешним углом, угол D(внутренний)=110°(как смежный), угол Е=С=(180-110):2=35°( по теореме о сумме углов треугольника)
Окружность вторично пересекает AD в точке E.
AB - касательная. По теореме о касательной и секущей:
AB^2=AD*AE => 25*3=15*AE => AE=5
AB/AD =1/√3 =AE/AB
△EAB~△BAD (по двум пропорциональным сторонам и углу между ними)
=> ∠ABE=∠ADB
∠ADB=∠CBD (накрест лежащие при BC||AD) => ∠ABE=∠CBD
EBCD - вписанная трапеция => равнобедренная, BE=CD=x
Внешний угол вписанного четырехугольника равен противолежащему внутреннему.
∠BEA=∠BCD
△BEA~△BCD (по двум углам) => BE/BC=AE/CD => x/5=5/x => x=5
BC=BE=5 => BD=AB=5√3
ED=AD-AE =15-5 =10
Для треугольника EBD выполняется теорема Пифагора:
10^2 =5^2 +(5√3)^2 => треугольник прямоугольный
∠EBD=90° => ED - диаметр, радиус=ED/2=5
В треугольнике EBD высота из прямого угла:
h =BE*BD/ED =5*5√3/10 =5√3/2
S(ABCD) =1/2 (BC+AD) h =1/2 (5+15) 5√3/2 =50√3/2
Треугольник АВС, угол С=180-50-60=70°(по теореме о сумме углов треугольника)
Треугольник FED,угол F= 180-20-90=70°(по теореме о сумме углов треугольника)
Треугольник KML, угол К= L( по свойству углов равнобедренного треугольника) К=L=( 180-40):2=70°(По теореме о сумме углов треугольника)
Треугольник ONP, угол О=Р=20°, угол N= 180-20-20=140°(по теореме о сумме углов треугольника)
Треугольник АВС, угол А=В=(180-90):2=45°(по теореме о сумме углов треугольника)
Треугольник СDE, углы С= D=E=60°( по свойству углов равнлстороннего треугольника)
Треугольник АВС с внешним уголом, угол С(внутренний) =100°, угол АСЕ=80( по свойству внешних углов)
Треугольник АВС с внешним углом, угол А(внутренний) =30°, угол СВА)=80°
Треугольник АСD= с внешним углом, угол САD(внутренний) =40°(как смежные), угол САD=CDA=40°=>угол С =180-40-40=100°(по теореме о сумме углов треугольника)
Треугольник ЕСD с внешним углом, угол D(внутренний)=110°(как смежный), угол Е=С=(180-110):2=35°( по теореме о сумме углов треугольника)
Окружность вторично пересекает AD в точке E.
AB - касательная. По теореме о касательной и секущей:
AB^2=AD*AE => 25*3=15*AE => AE=5
AB/AD =1/√3 =AE/AB
△EAB~△BAD (по двум пропорциональным сторонам и углу между ними)
=> ∠ABE=∠ADB
∠ADB=∠CBD (накрест лежащие при BC||AD) => ∠ABE=∠CBD
EBCD - вписанная трапеция => равнобедренная, BE=CD=x
Внешний угол вписанного четырехугольника равен противолежащему внутреннему.
∠BEA=∠BCD
△BEA~△BCD (по двум углам) => BE/BC=AE/CD => x/5=5/x => x=5
BC=BE=5 => BD=AB=5√3
ED=AD-AE =15-5 =10
Для треугольника EBD выполняется теорема Пифагора:
10^2 =5^2 +(5√3)^2 => треугольник прямоугольный
∠EBD=90° => ED - диаметр, радиус=ED/2=5
В треугольнике EBD высота из прямого угла:
h =BE*BD/ED =5*5√3/10 =5√3/2
S(ABCD) =1/2 (BC+AD) h =1/2 (5+15) 5√3/2 =50√3/2