9. Відрізки АBiCD перетинаються в точці О, яка є серединою відріз- ка CD. Точки BiC, AiD сполучені відрізками і ОCB= ОDA. Через точку о проведено пряму, яка перетинає відрізки ВС і AD уточках NiМвідповідно. Доведіть, що ОN =0М
Угол АДВ=180-60=120 Треугольник АВД-равнобедренный,т.к угол ABD=DAB (у равнобедренного треугольника углы при основании равны). 3. Угол DBC=180-(60+60)=60. Значит треугольник BDC- равносторонний( у равносторон. треугольника все углы равны 60). Следовательно CD=BC=BD=AD=5. 4.AC=AD+DC AC=5+5=10 5. DH-расстояние от точки D до AB,Значит угол DHC равен 90 (расстояние от точки до прямой- перпендикуляр от точки до прямой). 6. В треугольнике DHC, DH-катет лежащий против угла в 30 градусов. Значит он равен половине гипотенузы. DH= 0.5*AD DH=0.5*5=2.5 ответ:10; 2,5
Найдите сторону равнобокой трапеции, основания которой равны 10 и 8, а диагонали перпендикулярны боковым сторонам. ––––––––––––––––––––––––––––––––––––––––––––––– Вариант решения. Опустим высоту из тупого угла. Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на два отрезка, меньший из которых равен полуразности оснований, а больший – полусумме оснований. Боковая сторона- катет прямоугольного треугольника, образованного основанием, диагональю и боковой стороной трапеции. Обозначим ее х. Меньший отрезок на основании=1. Тогда х²=10*1=10 х=√10 см
Треугольник АВД-равнобедренный,т.к угол ABD=DAB (у равнобедренного треугольника углы при основании равны).
3. Угол DBC=180-(60+60)=60. Значит треугольник BDC- равносторонний( у равносторон. треугольника все углы равны 60). Следовательно CD=BC=BD=AD=5.
4.AC=AD+DC
AC=5+5=10
5. DH-расстояние от точки D до AB,Значит угол DHC равен 90 (расстояние от точки до прямой- перпендикуляр от точки до прямой).
6. В треугольнике DHC, DH-катет лежащий против угла в 30 градусов. Значит он равен половине гипотенузы. DH= 0.5*AD
DH=0.5*5=2.5
ответ:10; 2,5
–––––––––––––––––––––––––––––––––––––––––––––––
Вариант решения.
Опустим высоту из тупого угла.
Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на два отрезка, меньший из которых равен полуразности оснований, а больший – полусумме оснований.
Боковая сторона- катет прямоугольного треугольника, образованного основанием, диагональю и боковой стороной трапеции. Обозначим ее х. Меньший отрезок на основании=1. Тогда
х²=10*1=10
х=√10 см