В равнобедренном треугольнике АВС длина основания АВ равна √2, угол при основание равен 30 градусам найдите периметр треугольника.
Проведем высоту АН. В равнобедренном треугольнике высота, проведенная к основанию, является также биссектрисой и медианой.
АН = АС = √2/2 (ед.)
Угол ВАС = 30° (по условию)
Тангенс есть отношение противолежащего катета к прилежащему.
tg(30)° = BH : АН
tg(30)° = BH : √2/2
√3/3 = BH : √2/2
√3/3 = √2 × BH
BH = √3/(3√2)
BH = √6/6 (ед.)
По т. Пифагора:
c² = a² + b²
AB = √6/3 (ед.)
Так как треугольник равнобедренный:
AB = BC = √6/3 (ед.)
Периметр равнобедренного треугольника ищем по формуле:
P = 2a + b, где a - боковая сторона, b - основание.
ответ: (2√6)/3 + √2 (ед.)
В равнобедренном треугольнике АВС длина основания АВ равна √2, угол при основание равен 30 градусам найдите периметр треугольника.
Проведем высоту АН. В равнобедренном треугольнике высота, проведенная к основанию, является также биссектрисой и медианой.
АН = АС = √2/2 (ед.)
Угол ВАС = 30° (по условию)
Тангенс есть отношение противолежащего катета к прилежащему.
tg(30)° = BH : АН
tg(30)° = BH : √2/2
√3/3 = BH : √2/2
√3/3 = √2 × BH
BH = √3/(3√2)
BH = √6/6 (ед.)
По т. Пифагора:
c² = a² + b²
AB = √6/3 (ед.)
Так как треугольник равнобедренный:
AB = BC = √6/3 (ед.)
Периметр равнобедренного треугольника ищем по формуле:
P = 2a + b, где a - боковая сторона, b - основание.
ответ: (2√6)/3 + √2 (ед.)
2) d₁=3k , d₂ =4k .
(3k/2)² +(4k/2 )² = 10² ⇒ 25k²/4 =100 ⇒ k =4 ( k = - 4 не решение задачи)
d₁=3k =12;
d₂ =4k =16.
3)
BE/EC=3/1 ; ΔABE равнобедренный т.к. <BEA =< EAD =<EAB .
AB =BE =3k ;EC=k; BC=BE+EC=4k;
p =2(AB+BC)=2(k+4k) =10k.
Из ΔABC
AB² +BC² =AC² ⇔ (3k)² +(4k)² =50² ⇒(5k)² =(50)² ⇒ 5k=50 ⇒k =10 .
p =10k =10*10 =100 (см).
4) AB = 3k , BC =4k .
AB² +BC² =AC² (теорема Пифагора)
(3k)² +(4k)² =25² ⇒25k² =25² ⇒(5k)² =(25)² ⇒5k=25 ⇒ k=5 ;
AB = 5*3 =15 ;
BC= 5*4 =20 ;
AC= 5*5 =25 ;
3,4,5 (Пифагорово тройка) вообще (3k, 4k,5k ; k∈N)