1-случай. Если первый угол в вершине 48°, то второй угол 66.°
2-случай. Если первый угол на основании ∠A=∠C=48°, то второй угол 84°.
Объяснение:
Пусть в треугольнике ΔABC равнобедренный. Пусть ∠B - угол в вершине, тогда углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой, то есть углы на основании равны: ∠A=∠C.
1-случай. Пусть ∠B=48°. Сумма внутренних углов треугольник равна 180°=∠A+∠C+∠B, отсюда ∠A+∠C=180°-∠B=180°-48°=132°. Но ∠A=∠C и поэтому ∠A=∠=132°:2=66.°
2-случай. Пусть ∠A=∠C=48°. Тогда ∠B=180°-∠A-∠B=180°-48°-48°= =180°-96°=84°.
1) Вписанный угол АВС равен половине дуги, на которую опирается. Следовательно, дуга АС равна:
30° · 2 = 60°
2) Соединим точки А и С с центром окружности О.
∠АОС - центральный. Центральный угол равен дуге, на которую опирается, то есть ∠АОС = 60°.
3) В треугольнике АОС АО = ОС = 22 см, как радиусы окружности; следовательно, данный треугольник является равнобедренным, и углы при его основании равны:
∠ОАС = ∠АСО = (180° - ∠АОС) : 2 = (180° - 60°) : 2 = 120° : 2 = 60° - а это значит, что ΔАОС - равносторонний, так как все его углы равны 60°.
1-случай. Если первый угол в вершине 48°, то второй угол 66.°
2-случай. Если первый угол на основании ∠A=∠C=48°, то второй угол 84°.
Объяснение:
Пусть в треугольнике ΔABC равнобедренный. Пусть ∠B - угол в вершине, тогда углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой, то есть углы на основании равны: ∠A=∠C.
1-случай. Пусть ∠B=48°. Сумма внутренних углов треугольник равна 180°=∠A+∠C+∠B, отсюда ∠A+∠C=180°-∠B=180°-48°=132°. Но ∠A=∠C и поэтому ∠A=∠=132°:2=66.°
2-случай. Пусть ∠A=∠C=48°. Тогда ∠B=180°-∠A-∠B=180°-48°-48°= =180°-96°=84°.
АС = 22 см
Объяснение:
1) Вписанный угол АВС равен половине дуги, на которую опирается. Следовательно, дуга АС равна:
30° · 2 = 60°
2) Соединим точки А и С с центром окружности О.
∠АОС - центральный. Центральный угол равен дуге, на которую опирается, то есть ∠АОС = 60°.
3) В треугольнике АОС АО = ОС = 22 см, как радиусы окружности; следовательно, данный треугольник является равнобедренным, и углы при его основании равны:
∠ОАС = ∠АСО = (180° - ∠АОС) : 2 = (180° - 60°) : 2 = 120° : 2 = 60° - а это значит, что ΔАОС - равносторонний, так как все его углы равны 60°.
Таким образом:
АС = АО = ОС = 22 см
ответ: АС = 22 см