если одна прямая лежит в плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то такие прямые скрещивающиеся.
Прямая DC лежит в плоскости (ABC), прямая АВ₁ эту плоскость пересекает в точке А, не лежащей на прямой DC, значит прямые АВ₁ и DC скрещивающиеся по признаку.
2.
Признак параллельности прямой и плоскости:
если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в плоскости, то она параллельна плоскости.
DC и AB параллельны как противоположные стороны параллелограмма, АВ лежит в плоскости (АА₁В₁), значит DC параллельна плоскости (АА₁В₁) по признаку.
3.
Проведем DC₁. Докажем, что АВ₁║DC₁:
AD║BC, AD = BC, BC║B₁C₁, BC = B₁C₁ как противоположные стороны параллелограммов, значит
AD║B₁C₁ и AD = B₁C₁, следовательно AB₁C₁D - параллелограмм.
Тогда АВ₁║DC₁. DC₁ ⊂ (DCC₁), значит АВ₁║(DCC₁) по признаку параллельности прямой и плоскости.
В приложении даётся полный расчёт треугольника по координатам вершин. Там расчёт уравнений биссектрис под номером 18 дано с приведением коэффициента при х равным 1.
1. Прямые АВ₁ и DC скрещивающиеся
2. DC ║ (AA₁B₁)
3. АВ₁ ║ (DСС₁)
Объяснение:
1.
Признак скрещивающихся прямых:
если одна прямая лежит в плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то такие прямые скрещивающиеся.Прямая DC лежит в плоскости (ABC), прямая АВ₁ эту плоскость пересекает в точке А, не лежащей на прямой DC, значит прямые АВ₁ и DC скрещивающиеся по признаку.
2.
Признак параллельности прямой и плоскости:
если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в плоскости, то она параллельна плоскости.DC и AB параллельны как противоположные стороны параллелограмма, АВ лежит в плоскости (АА₁В₁), значит DC параллельна плоскости (АА₁В₁) по признаку.
3.
Проведем DC₁. Докажем, что АВ₁║DC₁:
AD║BC, AD = BC, BC║B₁C₁, BC = B₁C₁ как противоположные стороны параллелограммов, значит
AD║B₁C₁ и AD = B₁C₁, следовательно AB₁C₁D - параллелограмм.
Тогда АВ₁║DC₁. DC₁ ⊂ (DCC₁), значит АВ₁║(DCC₁) по признаку параллельности прямой и плоскости.
Надеюсь понятно.
Объяснение:
A(xA; yA) = A(1; -2)
B(xB; yB) = B(5; 4)
C(xC; yC) = C(-2; 0)
I) Найдем длины сторон:
AB = √(xB - xA)2 + (yB - yA)2 = √(5 - 1)2 + (4 - (-2))2 = √42 + 62 = √16 + 36 =√52 = 2√13 = 7.211
AC = √(xC - xA)2 + (yC - yA)2 = √(-2 - 1)2 + (0 - (-2))2 = √(-3)2 + 22 = √9 + 4= √13 = 3.606
BC = √(xC - xB)2 + (yC - yB)2 = √(-2 - 5)2 + (0 - 4)2 = √(-7)2 + (-4)2 =√49 + 16 = √65 = 8.062
II) Составим уравнения биссектрис. A3, B3, C3 — точки пересечения биссектрис, проходящих через вершины A, B, C соответственно, со сторонами BC, AC, AB соответственно.AA3:(((yB - yA)/АВ) + ((yC - yA)/АС)) x + (((xA - xB)/АВ) + ((xA - xC)/АС)) y +(((xByA - xAyB)/АВ)+ (xCyA - xAyC)/АС)) =
=(((4 - (-2)/7,211) + (0 - (-2)/3,606)) x + (((1 - 5)/7,211) + (1 - (-2))/3,606) y + (((5 ∙ (-2))- (1 ∙ 4))/7,211) + (((-2) ∙ (-2) - 1 ∙ 0))/3,606) = 0
=1387x + 277y - 832 = 0.
В приложении даётся полный расчёт треугольника по координатам вершин. Там расчёт уравнений биссектрис под номером 18 дано с приведением коэффициента при х равным 1.