Площадь полной поверхности призмы равна сумме площадей двух её оснований и площади боковой поверхности.
Боковые грани прямой призмы - прямоугольники. Площадь боковой поверхности равна периметру основания, умноженному на высоту призмы.
S=P•h=(10+12+20)•3=126 (ед. площади)
Площадь основания - площадь трапеции АВСD.
Высота равнобедренной трапеции, проведенная из тупого угла, делит большее основание на отрезки, меньший из которых равен полуразности, больший - полусумме оснований.
АН=(АD-BC):2=8:2=4
НВ=(AD+DC):2=32:2=16
Из ∆ АВН по т.Пифагора ( или обратив внимание на то, что ∆ АВН - египетский) находим ВН=3
Проводим прямую, отмечаем на ней точку получаем развернутый угол 180 градусов строим равностонний треугольник (нарисовали пряммую, отложили отрезок, с его концов росчерком циркуля равным построенному отрезку в одной полуплоскости относительно пряммой построили окружности, они пересекутся в третьей точке, получили равносторонний треугольник, каждый угол 60 градусов) проводим биссектриссу угла 60 градусов (получим углы в 30 градусов), задача на построение биссектриссы базовая проводим биссектриссу угла 30 градусов (получим углы в 15 градусов) от вершины развернутого угла откладываем угол равный углу 15 градусов, дополняющий угол (второй угол) будет равный 165 градусам (построить угол равный данному базовая задача).
Площадь полной поверхности призмы равна сумме площадей двух её оснований и площади боковой поверхности.
Боковые грани прямой призмы - прямоугольники. Площадь боковой поверхности равна периметру основания, умноженному на высоту призмы.
S=P•h=(10+12+20)•3=126 (ед. площади)
Площадь основания - площадь трапеции АВСD.
Высота равнобедренной трапеции, проведенная из тупого угла, делит большее основание на отрезки, меньший из которых равен полуразности, больший - полусумме оснований.
АН=(АD-BC):2=8:2=4
НВ=(AD+DC):2=32:2=16
Из ∆ АВН по т.Пифагора ( или обратив внимание на то, что ∆ АВН - египетский) находим ВН=3
S осн=3•16=48 Оснований у призмы 2.
S полн=126+2•48=222 (ед. площади)