А(0; -2; 0) и в (1; 2; -2). о-начало координат. 1.найдите точку м(o; o; z), заданную вдоль оси z, находящейся на одинаковом расстоянии от точек а и в. 2. найдите точку с(x; y; z) так, чтобы векторы со и ав были равны.3. напишите уравнение плоскости, проходящей через точку а и перпендикулярной прямой ов.
1) а=12см, с=13см,
b= \sqrt{ c^{2}- a^{2} } =5cmb=
c
2
−a
2
=5cm sin \alpha = \frac{12}{13}sinα=
13
12
2) c=40cm \alpha =30*α=30∗ , следовательно а=1/2с=20см
b= \sqrt{ c^{2} - a^{2} } = \sqrt{ 40^{2}- 20^{2} } =20 \sqrt{3}b=
c
2
−a
2
=
40
2
−20
2
=20
3
3)\alpha =45α=45 b=4cm
\alpha =45α=45 следовательно \beta =45β=45 и а=в=4см , c= \sqrt{2 a^{2} } = \sqrt{32} =4 \sqrt{2}c=
2a
2
=
32
=4
2
4)\alpha =60α=60 \beta =30β=30 b=5cm, значит c=2в=10см,
a= \sqrt{ c^{2} - b^{2} } = \sqrt{ 10^{2} - 5^{2} } =5 \sqrt{3} cma=
c
2
−b
2
=
10
2
−5
2
=5
3
cm
4)c= 10 дм, b= 6 дм. a= \sqrt{ c^{2} - b^{2} } = \sqrt{ 10^{2} - 6^{2} } =8dma=
c
2
−b
2
=
10
2
−6
2
=8dm
sin \alpha =4/5sinα=4/5
EF - средняя линия
EO = 3 см
OF = 4 см
Найти: AB
Решение.
1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам.
2) Рассмотрим треугольники EOD и ABD.
Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD.
Угол DBC общий. Следовательно, треугольник BOF подобен BDC.
3) Из подобия треугольников следует, что
AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.