Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Так как кратчайшее расстояние от точки до прямой, да и вообще от чего-то до чего-то - есть перпендикуляр, то искать, соответственно надо его. итак, по построению у нас получается треугольник, со сторонами 15, 13, 4 (основание), h (тот самый перпендикуляр + высота треугольника). воспользуемся формулой герона. найдем полупериметр: см. далее, считаем по формуле: s = √p * (p - 15) * (p - 13) * (p - 4), где р - полупериметр. получаем: s = √16 * 1 * 3 * 12 = 4 * 6 = 24 cм². также, s = , где 4 - основание⇒ h = 6 cм. - искомая нами высота.