А(1;-6;3), В(-3;2;6), С(2;-3;-6), D(1;1;1) 1. Знайти координати середини відрізка .AB
⃗⃗⃗⃗⃗
2. Знайти координати вектора .AB
⃗⃗⃗⃗⃗
3. Знайти абсолютну величину вектора .AB
⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗
5. Знайдіть координати вектора 2АB+CD
⃗⃗⃗⃗⃗
4. Обчислити скалярний добуток векторів та .AB та CD
6. Обчисліть косинус кута між векторами AB та CD
Треугoльник — жесткая фигура. Это свойство используют при строительстве мостовых арок, конструировании подъемных кранов и т.д. Свойства треугольника системно изложены в «Началах» Эвклида. Знак для обозначения треугольника еще в I в. н.э. применил древнегреческий учений Герон, а знак Δ применяется с IV в. н.э. Аксиома существования треугольника, равного данному.
Каким бы ни был треугольник, существует треугольник, равный ему в заданном расположении относительно данной полупрямой.
Свойства равных треугольников
1. В равных треугольниках соответствующие стороны равны.
2. В равных треугольниках соответствующие углы равны.
3. Периметры равных треугольников равны.
4. Площади равных треугольников равны.
5. Против равных сторон лежат равные углы.
6. Против равных углов лежат равные стороны.
Дополнительные признаки равенства
• Если две стороны и медиана, проведенная к третьей стороне треугольника, соответственно равны двум сторонам и медиане, проведенной к третьей стороне другого треугольника, такие треугольники равны.
• Если два угла и высота,проведенная к стороне, к которой прилегают эти углы, одного треугольника, соответственно равны двум углам и высоте, проведенной к стороне, к которой прилегают эти углы, другого треугольника, то такие треугольники равны.
• Если сторона, высота и медиана, проведенные к стороне одного треугольника, соответственно равны стороне, высоте и медиане, проведенным к этой стороне другого треугольника, то эти треугольники равны.
• Если медиана и углы, на которые она делит угол, одного треугольника, соответственно равны медиане и углам,на которые она делит угол, другого треугольника, эти треугольники равны.
Треугольник ADC = ABE.
Объяснение:
Треугольник ABD - равнобедренный, значит, угол ABD = ADB.
И в треугольнике углы ABD + ADB + BAD = 180°.
Но углы ABD + DBE + нижний B = 180°, причем ABD = ADB = нижнему B.
Отсюда BAD = DBE = 180° - 2*ABD
При этом углы BAD = DAC, значит, ACD = DEB.
Следовательно, треугольники ADC и BDE подобны по трем углам.
Теперь рассмотрим треугольники ADC и ABE.
Стороны AB = AD, углы DAC = BAE, ACD = AEB, ADC = ABE.
Эти треугольники равны по стороне и двум углам, прилежащим к ней.
Всё!