Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.
Дано:
ABCD – прямоугольник;
АL – биссектриса угла BAD;
ВL=3 см;
LC=4 см.
Найти:
Р(ABCD)
Так как противоположные стороны прямоугольника паралельны, то AD//BC.
Следовательно угол ALB=угол DAL как накрест-лежащие при параллельных прямых AD u BC и секущей AL.
Угол BAL=угол DAL, так как AL – биссектриса угла BAD.
Исходя из найденного: угол ALB=угол BAL.
Тогда ∆ABL – равнобедренный с основанием AL. Следовательно АВ=BL=3 см.
Периметр прямоугольника можно найти по формуле:
Р=2*(а+б), где а и б – смежные стороны.
Тогда Р(АВСD)=2*(AB+BC)=2*(AB+BL+LC)=2*(3+3+4)=2*10=20 см.
ответ: 20 см.