Допустим, у нас четырехугольная пирамида, в основании которой лежит квадрат ABCD. Высота - SO. Точка O - точка пересечения диагоналей.
1. Основание - квадрат. Площадь квадрата можно найти по формуле , где d-диагональ.
см
2. Диагонали в квадрате равны и точкой пересечения делятся пополам - OA=OB=OC=OD. Находим любой из перечисленных отрезков. 10/2=5 см
3. Рассмотрим треугольник SOC - прямоугольный, т.к. SO - высота. Мы знаем боковую грань (гипотенуза) и катет (половина диагонали). Можем найти второй катет, т.е. высоту. По теореме Пифагора: SC²=SO²+OC² 13²=SO²+5² SO²=169-25 SO²=144 SO=12 см
МК/АБ=МН/АС=к
8/4=12/6=2
треугольники АБС и МНК подобны
угол С=180-80-60=40
по 2 свойству подобия (подобие сохраняет величины углов)
угол А=М=80
угол В=К=60
угол С=Н=40
2. т.к. МК II АС => треугольники АВС и МВК подобные.
ВМ:АМ=1:4
пусть ВМ=х, тогда АМ=4х, тогда АВ=х+4х=5х =>
МВ:АВ=1:5
коэффициент подобия=1:5=0,2
Мы знаем, что отношение периметров подобных треугольников равно коэффициенту подобия =>
периметр треугольника МВК : периметру треугольника АВС = 1:5
периметр треугольника МВК=периметр треугольника АВС : 5
периметр треугольника МВК=25:5=5см.
Допустим, у нас четырехугольная пирамида, в основании которой лежит квадрат ABCD. Высота - SO. Точка O - точка пересечения диагоналей.
1. Основание - квадрат. Площадь квадрата можно найти по формуле
, где d-диагональ.
см
2. Диагонали в квадрате равны и точкой пересечения делятся пополам - OA=OB=OC=OD. Находим любой из перечисленных отрезков.
10/2=5 см
3. Рассмотрим треугольник SOC - прямоугольный, т.к. SO - высота.
Мы знаем боковую грань (гипотенуза) и катет (половина диагонали). Можем найти второй катет, т.е. высоту.
По теореме Пифагора:
SC²=SO²+OC²
13²=SO²+5²
SO²=169-25
SO²=144
SO=12 см