В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
MaShall5619
MaShall5619
14.07.2021 05:03 •  Геометрия

A (3; 1; -3), B (4; -1; -1), C (1; 5; 1)
K - ?
AK - бісектриса​

Показать ответ
Ответ:
rinnavinn
rinnavinn
08.12.2020 16:59

а). Точка, симметричная данной относительно оси 0Х, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Х, на расстоянии, равном расстоянию от  данной точки до оси 0Х. То есть это точка В(-1,5;-2).

б).  Точка, симметричная данной относительно оси 0Y, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Y,  перпендикулярно оси 0Y, на расстоянии, равном расстоянию от  данной точки до оси 0Y. То есть это точка С(1,5;2).

в).  Точка, симметричная данной относительно начала координат, лежит на прямой, проходящей через данную точку и начало координат, на расстоянии, равном расстоянию от  данной точки до начала координат.

То есть это точка D(1,5;-2).

0,0(0 оценок)
Ответ:
Оливка134
Оливка134
29.03.2023 20:32

Известно, что прямая пересекает плоскость, если она не принадлежит этой плоскости и не параллельна ей. Следуя приведенному ниже алгоритму, найдем точку пересечения прямой a с плоскостью общего положения α, заданной следами h0α, f0α.

Алгоритм

Через прямую a проводим вс фронтально-проецирующую плоскость γ. На рисунке обозначены её следы h0γ, f0γ.

Строим проекции прямой AB, по которой пересекаются плоскости α и γ. В данной задаче точка B' = h0α ∩ h0γ, A'' = f0α ∩ f0γ. Точки A' и B'' лежат на оси x, их положение определяется по линиям связи.

Прямые a и AB пересекаются в искомой точке K. Её горизонтальная проекция K' = a' ∩ A'B'. Фронтальная проекция K'' лежит на прямой a''.

Точка пересечения прямой и плоскости

Алгоритм решения останется тем же, если пл. α будет задана параллельными, скрещивающимися прямыми, отсеком фигуры или другими возможными .

Видимость прямой a относительно плоскости α. Метод конкурирующих точек

Определение видимости прямой

Отметим на чертеже фронтально-конкурирующие точки A и С (рис. ниже). Будем считать, что точка A принадлежит пл. α, а С лежит на прямой a. Фронтальные проекции A'' и С'' совпадают, но при этом т. A и С удалены от плоскости проекций П2 на разное расстояние.

Найдем горизонтальные проекции A' и C'. Как видно на рисунке, точка C' удалена от плоскости П2 на большее расстояние, чем т. A', принадлежащая пл. α. Следовательно, участок прямой а'', расположенный левее точки K'', будет видимым. Участок a'' правее K'' является невидимым. Отмечаем его штриховой линией.

Отметим на чертеже горизонтально-конкурирующие точки D и E. Будем считать, что точка D принадлежит пл. α, а E лежит на прямой a. Горизонтальные проекции D' и E' совпадают, но при этом т. D и E удалены от плоскости П1 на разное расстояние.

Определим положение фронтальных проекций D'' и E''. Как видно на рисунке, точка D'', находящаяся в пл. α, удалена от плоскости П1 на большее расстояние, чем т. E'', принадлежащая прямой a. Следовательно, участок а', расположенный правее точки K', будет невидимым. Отмечаем его штриховой линией. Участок a' левее K' является видимым.


Найти точку пересечения прямой общего положения с проецирующей прямой
Найти точку пересечения прямой общего положения с проецирующей прямой
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота