Дано: KL=27 KN=24 MN=8 Найти: Р(KMN)=? Решение Пусть LN=x, а KM=y (рисунок во вложении). KN является биссектрисой в ΔKLM. Используя свойство биссектрисы составим пропорцию: KL/LN=KM/MN. По условиям задачи KL=27, MN=8, LN=x и KM=y. Подставим значения: 27/х=у/8 Выразим х*у: х*у=27*8=216 (1) Найдём длину биссектрисы KN: KN²=KL*KM-LN*MN По условиям задачи KL=27, MN=8, LN=x и KM=y 24²=27у-8х 576=27у-8х (2)
Решим систему уравнений: {х*у=216 {576=27у-8х Выразим значение х из первого уравнения: х=216/у Подставим его во второе уравнение (метод подстановки): 576=27у-8х 576=27у-8*216/у 576=27у-1728/у (умножим все члены на у, чтобы избавиться от знаменателя) 576*у=27у²-1728 27у²-1728-576у=0 27у²—576у-1728=0 D=b²-4ac=(-576)²-4*27*(-1728)=331776+186624=518400 (√D= 720) у₁=(-b+√D)/2a=(-(-576)+720)/2*27=1296/54=24 у₂=(-b-√D)/2a=(-(-576)-720)/2*27=-144/27 – не подходит, т.к. х < 0
у=KM=24, 24х=216 х=LN=9
Р (ΔKMN)=KN+MN+KM=24+8+24=56 ответ: периметр треугольника KMN равен 56.
Пусть а и b — параллельные прямые, и пусть прямая с пересекает прямую а. Допустим, с не пересекает b, тогда через данную точку проходят 2 прямые, параллельные прямой b, но это невозможно, таким образом, пришли к противоречию. Или , вот ещё: Есть аксиома такая, если прямая параллельна одной из двух параллельных прямых, тогда она параллельна и второй. Теперь, если прямые не пересекаются, то они параллельны. Но нам известно, что прямая пересекает одну из двух параллельных прямых, соответственно, она не может быть параллельной (не пересекаться) со второй. Это следствие вытекает из аксиомы. Если бы она не пересекала вторую, значит и к первой была бы параллельна.
KL=27
KN=24
MN=8
Найти: Р(KMN)=?
Решение
Пусть LN=x, а KM=y (рисунок во вложении). KN является биссектрисой в ΔKLM. Используя свойство биссектрисы составим пропорцию: KL/LN=KM/MN.
По условиям задачи KL=27, MN=8, LN=x и KM=y. Подставим значения: 27/х=у/8
Выразим х*у:
х*у=27*8=216 (1)
Найдём длину биссектрисы KN:
KN²=KL*KM-LN*MN
По условиям задачи KL=27, MN=8, LN=x и KM=y
24²=27у-8х
576=27у-8х (2)
Решим систему уравнений:
{х*у=216
{576=27у-8х
Выразим значение х из первого уравнения: х=216/у
Подставим его во второе уравнение (метод подстановки):
576=27у-8х
576=27у-8*216/у
576=27у-1728/у (умножим все члены на у, чтобы избавиться от знаменателя)
576*у=27у²-1728
27у²-1728-576у=0
27у²—576у-1728=0
D=b²-4ac=(-576)²-4*27*(-1728)=331776+186624=518400 (√D= 720) у₁=(-b+√D)/2a=(-(-576)+720)/2*27=1296/54=24
у₂=(-b-√D)/2a=(-(-576)-720)/2*27=-144/27 – не подходит, т.к. х < 0
у=KM=24,
24х=216
х=LN=9
Р (ΔKMN)=KN+MN+KM=24+8+24=56
ответ: периметр треугольника KMN равен 56.