А(3;-2) және b(-5;2) векторлары берілген. 1) с = За + 2b ; деп алып, с векторының координаталарын табыңдар. A) c(-1;-5) b) c(2;-2) C) c(-1;-2) д) с(-2;3)
Объяснение: Пусть CD - перпендикуляр к плоскости треугольника, а CK ⊥ АВ (высота треугольника).
Тогда по теореме о трех перпендикулярах DK ⊥ АВ. То есть DK - искомое расстояние, т.е. расстояние от точки D до гипотенузы , АС=√АВ²-ВС²=√5²-3²= √16=4 ⇒ Площадь треугольника АВС S= AB·BC/2=3·4/2=6 ⇒ Высота СК в прямоугольном треугольнике, проведенная из вершины прямого угла, разбивает прямоугольный треугольник на два подобных треугольника и подобных исходному треугольнику. Длина высоты, проведенной из вершины прямого угла, равна отношению произведения длин катетов и гипотенузы: CК=АС·СВ/АВ = 4·3/5= 12/5=2,4 ⇒ DK²= CD²+CK²= 4²+(2,4)²=16+5,76=21,76 ⇒DK=√21,76=√2176/100= √(64·34)/100= 0,8√34
Объяснение: сначала найдём площадь одной боковой грани пирамиды: используя периметр, так как нам известны боковое ребро и сторона основы. Так как пирамида правильная, то боковые рёбра в ней равны, поэтому: Р=17×2+30=34+30=64см.
Для нахождения площади нужен полупериметр: р=64÷2=32см:
Найдём площадь боковой грани по формуле: S=√(p(p-a)(p-b)(p-c)), где а, b, c, стороны треугольника:
ответ:0,8√34
Объяснение: Пусть CD - перпендикуляр к плоскости треугольника, а CK ⊥ АВ (высота треугольника).
Тогда по теореме о трех перпендикулярах DK ⊥ АВ. То есть DK - искомое расстояние, т.е. расстояние от точки D до гипотенузы , АС=√АВ²-ВС²=√5²-3²= √16=4 ⇒ Площадь треугольника АВС S= AB·BC/2=3·4/2=6 ⇒ Высота СК в прямоугольном треугольнике, проведенная из вершины прямого угла, разбивает прямоугольный треугольник на два подобных треугольника и подобных исходному треугольнику. Длина высоты, проведенной из вершины прямого угла, равна отношению произведения длин катетов и гипотенузы: CК=АС·СВ/АВ = 4·3/5= 12/5=2,4 ⇒ DK²= CD²+CK²= 4²+(2,4)²=16+5,76=21,76 ⇒DK=√21,76=√2176/100= √(64·34)/100= 0,8√34
ответ: Sбок=720см², Sоснов=2295см²;
Sполн=3015см²
Объяснение: сначала найдём площадь одной боковой грани пирамиды: используя периметр, так как нам известны боковое ребро и сторона основы. Так как пирамида правильная, то боковые рёбра в ней равны, поэтому: Р=17×2+30=34+30=64см.
Для нахождения площади нужен полупериметр: р=64÷2=32см:
Найдём площадь боковой грани по формуле: S=√(p(p-a)(p-b)(p-c)), где а, b, c, стороны треугольника:
S=√(32(32-17)(32-17)(32-30))=√(32×15×15×2)=√(64×15×15)=
=8×15=120см²
Итак: S боковой стороны=120см².
Так как таких сторон 6, то площадь боковых сторон=120×6=720см²
Теперь найдём площадь шестиугольного основания по формуле:
S=а²×(3√3)/2=30²×(3√3/2)=900×3√3/2=
=450×3√3=1350√1350×1,7=2295см²
Итак: Sосн=2295см²
Теперь суммируем обе площади:
Sосн+Sбок=2295+720=3015см²