Итак, у нас есть 43угольник, составленный из отрезков, соединяющих центры (длины 3). Радиус окружности, описанной вокруг этого 43угольника, равен (D+3)/2, где D - искомый диаметр.
Рассмотрим равнобедренный треугольник, образованный стороной многоугольника длины 3 и двумя радиусами (длины (D+3)/2). Угол при вершине 360/43 (градусов);
Легко видеть, что (3/2)/((D + 3)/2) = sin(360/(2*43)) (это обычная связь между половиной основания и боковой стороной в равнобедренном треугольнике - их отношение равно синусу половины угла при вершине);
Итак, 3/(D+3) = sin(180/43); D = 3*(1/sin(180/43) - 1);
отметим сторону основания за "х".
так как в услоии дана правильная четырехугольная призма, то все ее боковые грани равны..найдем площадь одной из них: 16 / 4 = 4 дм²
S 1 грани = 4 = х*1 , х = 4 - сторона основания
найдем диагональ грани по теореме пифагора , зная высоту и сторону основания..
d1 = √ (16+ 1) = √17
найдем диагональ основания:
d2 = a√2 = 4√2
наше сечение и есть равнобедренный треугольник с основанием d2 и боковыми сторонами d1
тогда опустим высоту на основание d2, по теореме пифагора вычислим высоту:
h = √( 17 - 8) = √9 = 3
ответ: S треугольника(сечения) = b*h/2 = 3*4√2/2 = 6√2
Итак, у нас есть 43угольник, составленный из отрезков, соединяющих центры (длины 3). Радиус окружности, описанной вокруг этого 43угольника, равен (D+3)/2, где D - искомый диаметр.
Рассмотрим равнобедренный треугольник, образованный стороной многоугольника длины 3 и двумя радиусами (длины (D+3)/2). Угол при вершине 360/43 (градусов);
Легко видеть, что (3/2)/((D + 3)/2) = sin(360/(2*43)) (это обычная связь между половиной основания и боковой стороной в равнобедренном треугольнике - их отношение равно синусу половины угла при вершине);
Итак, 3/(D+3) = sin(180/43); D = 3*(1/sin(180/43) - 1);
Это можно вычислить только приближенно.
D = 38,0985282265883 (точнее не смог :)))