Острый и тупой угол трапеции, прилежащие к одной и той же боковой стороне в сумме равны 180°. У нас равнобедренная трапеция. Это значит в ней два одинаковых острых и два одинаковых тупых угла, и поэтому неважно, противолежащие они или нет. Таким образом, зная разность и сумму острого и тупого углов (они жн противолежащие), легко вычислить углы. Обозначим любой из углов, например, тупой, как икс. А острый как игрек. Тогда Y=Х-40 или Y=180-Х, значит Х-40=180-Х; 2Х=180+40; Х=220:2=110°; Y=110-40=70° ответ: тупые углы равны 110°, а острые углы равны 70°
ответ: тупые углы равны 110°, а острые углы равны 70°
найти: Sполн.пов
решение.
Sполн.пов=Sбок+Sосн
Sбок=Росн*ha, ha-апофема
Sосн=а²
АВСД - квадрат. найдем диагональ АС по теореме Пифагора:
АС²=АВ²+ВС². АС=2√2
рассмотрим ΔМАО:
(О- точка пересечения диагоналей квадрата-основания пирамиды)
<MAO=45°,
AO=2√2/2, AO=√2. ΔMAO - прямоугольный равнобедренный, ⇒МО=√2
МК-апофема.
рассмотрим ΔМОК: <MOK=90°(MO-высота пирамиды)
ОК=2:2, ОК=1
найдем МК по тереме Пифагора:
МК²=МО²+ОК², МК=√3
Sполн.пов=(4*2*√3)+2²=8√3+4
Sполн.пов=8√3+4