Гомоте́тия (от др.-греч. ὁμός «одинаковый» + θετος «расположенный») — преобразование плоскости (или пространства), заданное центром O и коэффициентом {\displaystyle k\neq 0}k\neq 0, переводящее каждую точку {\displaystyle X}X в точку {\displaystyle X'}X' такую, что {\displaystyle {\overrightarrow {OX'}}=k{\overrightarrow {OX}}}\overrightarrow {OX'}=k\overrightarrow {OX}. При этом центр остаётся на месте. Гомотетию с центром O и коэффициентом k часто обозначают через {\displaystyle H_{O}^{k}}H_{O}^{k}.
1. ΔАОВ: ∠АОВ = 90°, АВ = АО/ cos60° = 2 см АВ = АС = 2 см ΔАВС: ∠САВ = 90°, по теореме Пифагора ВС = √(АВ² + АС²) = √(4 + 4) = 2√2 см
2. ΔАВС равносторонний, так как АВ = АС = 2 см и ∠ВАС = 60°, ⇒ ВС = 2 см ΔАОВ = ΔАОС по катету и гипотенузе (АО - общий катет, АВ = АС по условию), ⇒ ОВ = ОС. ΔОВС - прямоугольный, равнобедренный, значит ВС = ОВ√2 ОВ = ВС/√2 = 2/√2 = √2 см ΔАОВ: по теореме Пифагора АО = √(АВ² - ОВ) = √(4 - 2) = √2 см
3. ΔАВС равносторонний, так как АВ = АС и ∠ВАС = 60°, ⇒ ВС = АВ = АС = х ΔАОВ = ΔАОС по катету и гипотенузе (АО - общий катет, АВ = АС по условию), ⇒ ОВ = ОС. ΔОВС - прямоугольный, равнобедренный, значит ВС = ОВ√2 ОВ = ВС/√2 = х/√2 ΔАОВ: cos∠ABO = OB/AB = x/√2 / x = 1/√2 = √2/2, ⇒ ∠ABO = 45° ∠ACO = ∠ABO = 45° так как ΔАОВ = ΔАОС.
Гомоте́тия (от др.-греч. ὁμός «одинаковый» + θετος «расположенный») — преобразование плоскости (или пространства), заданное центром O и коэффициентом {\displaystyle k\neq 0}k\neq 0, переводящее каждую точку {\displaystyle X}X в точку {\displaystyle X'}X' такую, что {\displaystyle {\overrightarrow {OX'}}=k{\overrightarrow {OX}}}\overrightarrow {OX'}=k\overrightarrow {OX}. При этом центр остаётся на месте. Гомотетию с центром O и коэффициентом k часто обозначают через {\displaystyle H_{O}^{k}}H_{O}^{k}.
АВ = АС = 2 см
ΔАВС: ∠САВ = 90°, по теореме Пифагора
ВС = √(АВ² + АС²) = √(4 + 4) = 2√2 см
2. ΔАВС равносторонний, так как АВ = АС = 2 см и ∠ВАС = 60°, ⇒
ВС = 2 см
ΔАОВ = ΔАОС по катету и гипотенузе (АО - общий катет, АВ = АС по условию), ⇒ ОВ = ОС.
ΔОВС - прямоугольный, равнобедренный, значит
ВС = ОВ√2
ОВ = ВС/√2 = 2/√2 = √2 см
ΔАОВ: по теореме Пифагора
АО = √(АВ² - ОВ) = √(4 - 2) = √2 см
3. ΔАВС равносторонний, так как АВ = АС и ∠ВАС = 60°, ⇒
ВС = АВ = АС = х
ΔАОВ = ΔАОС по катету и гипотенузе (АО - общий катет, АВ = АС по условию), ⇒ ОВ = ОС.
ΔОВС - прямоугольный, равнобедренный, значит
ВС = ОВ√2
ОВ = ВС/√2 = х/√2
ΔАОВ: cos∠ABO = OB/AB = x/√2 / x = 1/√2 = √2/2, ⇒
∠ABO = 45°
∠ACO = ∠ABO = 45° так как ΔАОВ = ΔАОС.