Задачу можно решить двумя обычным и через sin))) Какой вам лучше, выбирайте сами.
Обозначим параллелограмм, как АВСД
ВН - высота, опущенная на сторону АД
АН = 4 см, НД = 2 см.
АД = АН + НД = 4 + 2 = 6 см.
параллелограмма = АД × ВН
Угол В = 135 - 90 = 45 градусов (т.к. ВН - высота, следовательно, она опущена под углом 90 градусов)
Рассмотрим треугольник АВН. Угол ВНА = 90 градусов, АВН = 45 градусов, следовательно угол ВАН = 180 - 90 - 45 = 45 градусов. Значит треугольник АВН - равнобедренный
Следовательно, ВН=АН=4 см.
S параллелограмма = 6 × 4 = 24
параллелограмма = АВ × АД × sin a
Sin а = 45 градусов = √2 делённое на 2
АВ² = √ВН² + АН² = √4² + 4² = √32
Треугольник может существовать, если сумма двух сторон больше третьей стороны.
Пусть стороны треугольника а, в, с, причем а=в.
1) если а=7, в=7, тогда с=3; треугольник может существовать, т.к. 7+7>3;
если а=3, в=3, тогда с=7; треугольник существовать не может, т.к. 3+3<7.
2) если а=8, в=8, то с=2; треугольник может существовать, т.к. 8+8>2;
если а=2, в=2, тогда с=8; треугольник существовать не может, т.к. 2+2<8.
3) если а=10, в=10, тогда с=5; треугольник может существовать, т.к. 10+10>5;
если а=5, в=5, тогда с=10; треугольник существовать не может, т.к. 5+5=10.
Задачу можно решить двумя обычным и через sin))) Какой вам лучше, выбирайте сами.
Обозначим параллелограмм, как АВСД
ВН - высота, опущенная на сторону АД
АН = 4 см, НД = 2 см.
АД = АН + НД = 4 + 2 = 6 см.
параллелограмма = АД × ВН
Угол В = 135 - 90 = 45 градусов (т.к. ВН - высота, следовательно, она опущена под углом 90 градусов)
Рассмотрим треугольник АВН. Угол ВНА = 90 градусов, АВН = 45 градусов, следовательно угол ВАН = 180 - 90 - 45 = 45 градусов. Значит треугольник АВН - равнобедренный
Следовательно, ВН=АН=4 см.
S параллелограмма = 6 × 4 = 24
параллелограмма = АВ × АД × sin a
Sin а = 45 градусов = √2 делённое на 2
АВ² = √ВН² + АН² = √4² + 4² = √32
S параллелограмма = √32 × 6 × √2 делённое на 2 = 24Треугольник может существовать, если сумма двух сторон больше третьей стороны.
Пусть стороны треугольника а, в, с, причем а=в.
1) если а=7, в=7, тогда с=3; треугольник может существовать, т.к. 7+7>3;
если а=3, в=3, тогда с=7; треугольник существовать не может, т.к. 3+3<7.
2) если а=8, в=8, то с=2; треугольник может существовать, т.к. 8+8>2;
если а=2, в=2, тогда с=8; треугольник существовать не может, т.к. 2+2<8.
3) если а=10, в=10, тогда с=5; треугольник может существовать, т.к. 10+10>5;
если а=5, в=5, тогда с=10; треугольник существовать не может, т.к. 5+5=10.