А) длины сторон двух участников земли, имеющих форму квадрата, равны 10м и 24м. Найдите длину стороны квадратного участка земли, имеющего площадь, равную сумме площадей этих участков. б) Стороны прямоугольника 4см и 15см. Найдите стороны равновеликого ему прямоугольника, если они относятся как 3:5.
В) Найдите сторону квадрата, равновеликого прямоугольному треугольнику с катетами 24см и 27см.
надеюсь кто нибудь
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
Угол ВАС = углу АСД (накрест лежащие при ВС пар-но АД и секущей АС)
Углы АСТ и ТСД равны(по условию)
Они по 30 градусов
Рассмотрим треугольник СТД.
Угол С = 30 градусов, угол Д = 90 градусов
А катет, лежащий против угла 30 градусов равен половине гипотенузы
СТ = 6*2 = 12
По теореме пифагора
СД =корень квадратный из 144-38 =к.к. из 108 = 6 корней из 3
А периметр равен:
18*2 + 6 √3 * 2 =36 + 12√3
Если есть ответы, сверься, потому что то, что Р и Е середины я не использовала, и зачем дана точка О тоже не понятно. Условие точно правильное, потому что у треугольнико АСД не может быть бис-сы, а вот у угла АСД - вполне