А)докажите равенство треугольников adc и abc, изображенных на рисунке, если ad = ab и 21 = 22. б) найдите угол acd, если _acb = 38°, и длину стороны ad, если ab = 13см.
Если исходить из того, что ВСЕ боковые рёбра образуют угол в 45 градусов с высотой, получится, что их проекции на основание будут также равны 16 (т.к. треугольник "высота"-"ребро"-"проекция ребра" получится равнобедренным прямоугольным). Теперь нарисуем основание и нанесём всё то, что нам известно: 1. Точка-проекция верхней точки пирамиды будет лежать на линии из тупого угла, являющейся медианой/биссектрисой/высотой треугольника-основания. 2. Точка-проекция верхней точки пирамиды равноудалена от всех верщин основания на 16. Это значит, что она лежит ВНЕ треугольника основания - т.е. сама пирамида как бы нависающая. Если это не очевидно (а центр окружности, описанной около тупоугольного треугольника, лежит вне его) - пишите, докажем отдельно. Теперь рассмотрим треугольник, образованный боковой стороной основания, проекцией ребра из тупого угла и проекцией ребра из острого угла. Он равнобедренный, и один из углов при основании равен 120/2 = 60 градусов - ага, значит он не просто равнобедренный, но и равносторонний! Боковая сторона основания, таким образом, равна 16. Дальше найдём "длинную" сторону основания - 2* 16*cos (30) = 32 * /2 = 16 А опущенная на неё из тупого угла высота: 16*sin (30) =16 * 1/2 = 8 Площадь треугольника: 1/2 * a * h = 1/2 * 16 * 8 = 128 Объём пирамиды: 1/3 * 128 * 16 = 2048/3 *
По условию задачи составим уравнения:
(1/2)*х*у = 240,
х + у + √(х² + у²) = 80.
Из первого уравнения у = 480 / х подставим во второе уравнение.
х + (480 / х) + √( х² + (480 / х)²) = 80.
Приведём к общему знаменателю и корень перенесём в правую часть.
х² - 80х + 480 = √( х⁴ + (480²)
Возведём в квадрат обе части:
х⁴ - 160х³ + 7360х² - 76800х + 480² = х⁴ + 480².
После сокращения получаем уравнение третей степени:
-160х³ + 7360х² - 76800х = 0.
Разделим на -160 и вынесем х за скобки:
х(х² -46х + 480) = 0.
Первый корень х = 0 отбрасываем по ОДЗ.
х² -46х + 480 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-46)^2-4*1*480=2116-4*480=2116-1920=196;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√196-(-46))/(2*1)=(14-(-46))/2=(14+46)/2=60/2=30;
x_2=(-√196-(-46))/(2*1)=(-14-(-46))/2=(-14+46)/2=32/2=16.
Полученные значения и есть размеры катетов.
Гипотенуза равна √(30² + 16²) = √(900 + 256) = √ 1156 = 34 м.
Тогда радиус описанной окружности равен половине гипотенузы: 34 / 2 = 17 м.
1. Точка-проекция верхней точки пирамиды будет лежать на линии из тупого угла, являющейся медианой/биссектрисой/высотой треугольника-основания.
2. Точка-проекция верхней точки пирамиды равноудалена от всех верщин основания на 16. Это значит, что она лежит ВНЕ треугольника основания - т.е. сама пирамида как бы нависающая.
Если это не очевидно (а центр окружности, описанной около тупоугольного треугольника, лежит вне его) - пишите, докажем отдельно.
Теперь рассмотрим треугольник, образованный боковой стороной основания, проекцией ребра из тупого угла и проекцией ребра из острого угла. Он равнобедренный, и один из углов при основании равен 120/2 = 60 градусов - ага, значит он не просто равнобедренный, но и равносторонний! Боковая сторона основания, таким образом, равна 16.
Дальше найдём "длинную" сторону основания - 2* 16*cos (30) = 32 * /2 = 16
А опущенная на неё из тупого угла высота:
16*sin (30) =16 * 1/2 = 8
Площадь треугольника:
1/2 * a * h = 1/2 * 16 * 8 = 128
Объём пирамиды:
1/3 * 128 * 16 = 2048/3 *