А) (х + 3) + (у +5)=4 б) (x-3) + (у +5)=4 в) (x +3) + (у +5)' =2 г) (x - 3) + (у + 5) = 2 2. Найдите координаты точки В, если даны координаты следующих точек: A[ 1; 2), М(-2; -7) и AM = MB
3. Построите окружность, соответствующую уравнению: x+y'.
+ 4 + 4 = 9
4. Принадлежат ли точки A(6; 0), B( 1; -3) заданной окружности (х -6)* + (y+3)= 9
5. Даны вершины треугольника ABC: A(- 2; - 3), B( 1; 4), С(8; 7). Определите вид треугольника и найдите его периметр.
Критерий оценивания
Alon
7.(2б)
Найти угол между стороной AB и медианой BB₁ треугольника ABC :
A(3; 5; 0) , B(0 ; - 6; 0) , C(3 ;1 ;0) . AB₁=CB₁ = AC/2 = 2
∠ABB₁ -?
- - - - - - - - - - --
B₁ (3 ; 3; 0) _середина стороны AC * * * (3+3) /2 ; (5+1)/2 ; (0+0)/2 * * *
BA { 3 ; 11 ; 0 } * * * 3 -0 ; 5 -(-6) ; 0 -0 * * *
BB₁ { 3 ; 9 ; 0 } * * * 3 -0 ; 3 -(-6) ; 0 -0 * * *
cos(∠(BA, BB₁) ) = BA*BB₁ / |BA|*|BB₁| =
(3*3+11*9 +0*0)/√(3²+11²+0²)*√(3²+9²+0²) =108/√130*√90 =
108/ 30 √13 =3,6 / √13 .
* * * ! 3,6 /√13 =(√3,6²) /√13 =√12,96 /√13 < 1 * * *
∠(BA, BB₁) =arccos(3,6 /√13 )
BA*BB₁ - скалярное произведение векторов BA и BB₁
|BA| и |BB₁| - модули векторов BA и BB₁
- - - - - - - -
8.(2б)
B(2 ; - 1; - 1) , A(2 ; 2 ; - 4) , C(3 ; - 1 ; -2) ,
BA { 0 ; 3 ; -3} ; BC { 1 ; 0 ; - 1}
cos(∠(BA, BC) ) = BA*BB / |BA|*|BC|
BA*BC - скалярное произведение векторов BA и BC
|BA| и |BC| - модули векторов BA и BC
* * * ∠(BA, BC) = ∠B * * *
cos∠B = cos(∠(BA, BC) )= (0*1+3*0 + (-3)*(-1) )/√(0²+3²+(-3)² )*√(1²+0²+(-1)²) =
3/√18*√2 = 3/6 =1/2 ⇒ ∠B =60 °
Внешний угол при вершине B будет 180° - ∠B = 180° - 60 ° = 120°
- - - - - - - -
9.(2б) Центр сферы A(4 ; -4 ; 2) , O(0 ; 0 ;0) ∈ поверхности сферы
* * *(x - x₀)²+(y - y₀)²+ (z - z₀)² = R² уравнение сферы радиусом R , центр которой в точке A( x₀; y₀ ; z₀) * * *
(x - 4)²+(y +4)²+ (z -2)² = R² Нужно найти R
Т.к. O(0 ; 0 ;0) ∈ поверхности сферы ,то
(0 - 4)²+(0 +4)²+ (0 -2)² = R² ⇔ R² =36
следовательно
(x - 4)²+(y +4)²+ (z -2)² = 36 * * * R² =6² * * *
1.Какая фигура называется четырехугольником?
Четырехугольником называется фигура, которая состоит из четырех точек ( вершин), и четырех последовательно соединяющих их отрезков (сторон), причем никакие три из вершин не лежат на одной прямой, а соединяющие их отрезки не пересекаются.
2.Какие вершины четырехугольника называются соседними, какие –противолежащими?
Соседними называются вершины четырехугольника, которые являются концами одной из его сторон. Вершины, не являющиеся соседними, называются противолежащими.
3.Что такое диагональ четырехугольника?
Диагоналями четырехугольника называются отрезки. которые соединяют его противоположные вершины.
4.Как обозначается четырехугольник?
Четырехугольник обычно обозначается латинскими буквами, которые присваиваются каждой вершине.
5.Что такое параллелограмм?
Четырехугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.
У параллелограмма противолежащие стороны равны и противолежащие углы равны а его диагонали точкой пересечения делятся пополам.