Дано два цилиндра. Объем первого цилиндра равен 80. У второго цилиндра высота в 3 раза больше, а радиус основания в 4 раза меньше, чем у первого.Найдите объем второго цилиндра.
Решение.
1) Пусть V₁ =πR²*H = 80 - объём первого цилиндра, где R - радиус его основания, а H - высота;
тогда V₂ =π(R/4)²*(H*3) = πR²*H * (3/16) - объём второго цилиндра.
2) Так как объём второго цилиндра составляет 3/16 от объёма первого цилиндра, то этот объём равен:
Высота боковой грани МАВ - прямая МА, которая из тр-ка МАД равна: МА=√(МД²+АД²)=√(15²+10²)=√325=5√13 дм. Высота боковой грани МВС - прямая МС, которая из тр-ка МСД равна: МС=√(МД²+СД)=√(15²+20²=25 дм. Площадь ΔМАВ: S1=AB·MA/2=20·5√13/2=50√13 дм². Площадь ΔМВС: S2=ВС·МС/2=10·25/2=125 дм². Площадь двух граней, прилежащих к высоте МД: S3=(АД+СД)·МД/2=(10+20)·15/2=225 дм². Площадь основания: S4=АВ·АД=20·10=200 дм². Общая площадь - это сумма всех найденных площадей: S=50√13+125+225+200=50(1+11√13) дм³ - это ответ.
15 ед. изм.³
Объяснение:
Условие задачи.
Дано два цилиндра. Объем первого цилиндра равен 80. У второго цилиндра высота в 3 раза больше, а радиус основания в 4 раза меньше, чем у первого.Найдите объем второго цилиндра.
Решение.
1) Пусть V₁ =πR²*H = 80 - объём первого цилиндра, где R - радиус его основания, а H - высота;
тогда V₂ =π(R/4)²*(H*3) = πR²*H * (3/16) - объём второго цилиндра.
2) Так как объём второго цилиндра составляет 3/16 от объёма первого цилиндра, то этот объём равен:
80 * 3/16 = 5 * 3 = 15 единиц измерения³.
ответ: 15 ед. изм.³
МА=√(МД²+АД²)=√(15²+10²)=√325=5√13 дм.
Высота боковой грани МВС - прямая МС, которая из тр-ка МСД равна:
МС=√(МД²+СД)=√(15²+20²=25 дм.
Площадь ΔМАВ: S1=AB·MA/2=20·5√13/2=50√13 дм².
Площадь ΔМВС: S2=ВС·МС/2=10·25/2=125 дм².
Площадь двух граней, прилежащих к высоте МД:
S3=(АД+СД)·МД/2=(10+20)·15/2=225 дм².
Площадь основания: S4=АВ·АД=20·10=200 дм².
Общая площадь - это сумма всех найденных площадей:
S=50√13+125+225+200=50(1+11√13) дм³ - это ответ.