Значит сначала мы должны найти площадь основания пирамиды, а затем площадь боковой поверхности пирамиды.
В основании правильной четырёхугольной пирамиды лежит квадрат, поэтому (см²).
Площадь боковой поверхности правильной четырёхугольной пирамиды - полупроизведение периметра основания на апофему.
Значит нам нужно сначала найти апофему нашей пирамиды.
1 правило: Апофема делит сторону основания пополам.2 правило: Катет прямоугольного треугольника, который образован апофемой пирамиды, высотой и отрезком, их соединяющим, равен половине длины основания правильной четырехугольной пирамиды.
Объяснение 1 правила: из этого следует, что апофема делит сторону основания так, что (см).
Объяснение 2 правила: внутри нашей пирамиды образовался прямоугольный , где - катет прямоугольного тр-ка (высота пирамиды); - катет прямоугольного тр-ка; - гипотенуза прямоугольного тр-ка (апофема пирамиды). По данному правилу можно сказать, что (см).
Так как апофема нашей пирамиды является ещё и гипотенузой прямоугольного , то мы сможем найти её величину по т.Пифагора:
(см).
Теперь найдём периметр основания (квадрата):
(см).
Затем найдём площадь боковой поверхности:
(см²).
Остаётся найти ответ на вопрос: "Чему равна площадь полной поверхности пирамиды?"
Правильная призма — это прямая призма, основанием которой является правильный многоугольник (в нашем случае - квадрат). Боковые грани правильной призмы — равные прямоугольники (в нашем случае стороны этих прямоугольников равны а и 2а). Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник со сторонами, равными высоте призмы (2а) и диагонали основания (в нашем случае а√2, так как по Пифагору d=√(a²+a²)). Таким образом, площадь диагонального сечения нашей призмы равна Sд=2а*а√2=2а²√2 ед².
Правильная четырёхугольная пирамида .
(см).
(см).
Найти:(см²).
Решение:Значит сначала мы должны найти площадь основания пирамиды, а затем площадь боковой поверхности пирамиды.
В основании правильной четырёхугольной пирамиды лежит квадрат, поэтому (см²).
Площадь боковой поверхности правильной четырёхугольной пирамиды - полупроизведение периметра основания на апофему.
Значит нам нужно сначала найти апофему нашей пирамиды.
1 правило: Апофема делит сторону основания пополам.2 правило: Катет прямоугольного треугольника, который образован апофемой пирамиды, высотой и отрезком, их соединяющим, равен половине длины основания правильной четырехугольной пирамиды.Объяснение 1 правила: из этого следует, что апофема делит сторону основания так, что (см).
Объяснение 2 правила: внутри нашей пирамиды образовался прямоугольный , где - катет прямоугольного тр-ка (высота пирамиды); - катет прямоугольного тр-ка; - гипотенуза прямоугольного тр-ка (апофема пирамиды). По данному правилу можно сказать, что (см).
Так как апофема нашей пирамиды является ещё и гипотенузой прямоугольного , то мы сможем найти её величину по т.Пифагора:
(см).
Теперь найдём периметр основания (квадрата):
(см).
Затем найдём площадь боковой поверхности:
(см²).
Остаётся найти ответ на вопрос: "Чему равна площадь полной поверхности пирамиды?"
(см²).
ответ: (см²).Таким образом, площадь диагонального сечения нашей призмы равна Sд=2а*а√2=2а²√2 ед².