А) Как, используя признаки параллелограмма, можно: 1) установить, параллельны ли края прямой дороги; 2) имеет ли форму параллелограмма четырехугольная пластинка? Б) Является ли параллелограммом четырехугольник: 1) имеющий две пары равных противоположных углов; 2) две стороны которого не равны, а две другие параллельны?
В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .
12см
Объяснение:
ΔABM - прямоугольный (BM⊥AD). В прямоугольном треугольнике катет, лежащий против угла в 30° равен половине гипотенузы. Катет, лежащий против угла в 30°, это АМ, а гипотенуза в ΔАВМ - это АВ, т.е. АВ=2АМ=2*6см=12см. Также в прямоугольном треугольнике сумма острых углов равна 90°. Поэтому ∠А=90-30=60°.
Поскольку ABCD - ромб, то у него все стороны равны, т.е. AB=BC=CD=AD=12см. Т.е. ΔABD является равнобедренным (AB=AD). ∠ABD=∠ADB=(180-∠BAD)/2=(180-60)/2=60°. Т.е. ΔABD равносторонний. Значит, BD=AB=12см.