Так как ширина окантовки одинакова, примем её за х (см), тогда : (2х + 19) см - это ширина картины с окантовкой (2х + 32) см - это длина картины с окантовкой (2х + 19) * (2х + 32) - это площадь картины с окантовкой Составим уравнение: (2х + 19) * (2х + 32) = 1080 4х^2 + 34 x + 64x + 608 = 1080 4x^2 + 102x - 472 = 0 ( : на 2) 2x^2 + 51 - 236 = 0 D = 2601 - 4(-236)(2) = 2601 + 1888 = 4489; YD = 67 x1 = (- 51 + 67) / 4 = 16/4 = 4 x2 = (-51 -67) / 4 = - 29,5 ( не подходит по условию задачи) ответ: 4см - ширина окантовки
тогда :
(2х + 19) см - это ширина картины с окантовкой
(2х + 32) см - это длина картины с окантовкой
(2х + 19) * (2х + 32) - это площадь картины с окантовкой
Составим уравнение:
(2х + 19) * (2х + 32) = 1080
4х^2 + 34 x + 64x + 608 = 1080
4x^2 + 102x - 472 = 0 ( : на 2)
2x^2 + 51 - 236 = 0
D = 2601 - 4(-236)(2) = 2601 + 1888 = 4489; YD = 67
x1 = (- 51 + 67) / 4 = 16/4 = 4
x2 = (-51 -67) / 4 = - 29,5 ( не подходит по условию задачи)
ответ: 4см - ширина окантовки
Объяснение:
10.
Медиана, проведенная к гипотенузе, равна половине гипотенузы, поэтому ΔСМА - равнобедренный, СМ=АМ.
ΔМСН - прямоугольный, ΔСНМ=90°, ∠МСН=20°, ∠СМН=90-20=70°
∠СМН и ∠СМА - смежные, их сумма 180°, поэтому ∠СМА=180-70=110°
∠А=∠АСМ=(180-110)=35°
∠В=90-35=55°, т.к. сумма острых углов прямоугольного треугольника составляет 90°
ответ: 35°, 55°
11.
Пусть ∠1=2х°, ∠2=3х°, тогда ∠А=180-2х, а ∠С=180-3х по свойству смежных углов
Составим уравнение: 90+180-2х+180-3х=180
-5х+90+360-180=0
5х=270; х=54
∠1=54*2=108°; ∠2=54*3=162°
∠А=180-108=72°; ∠С=180-162=18°
ответ: 72°, 18°