А) Найдите длину дуги окружности, соответствующей цен- тральному углу в 45, если радиус окружности равен 8 см. б) Най- дите длину дуги окружности, соответствующей центральному углу в 60°, если радиус окружности равен 10 см.
Пусть точка А имеет координаты А(x1; y1) Т.к. М - середина отрезка АВ, то она будет иметь координаты М((х1 - 7)/2; ((у1 - 5)/2)) Известно, что точка М имеет координаты М(-3; -4). Тогда приравниваем координаты точки М с неизвестными х1 и у1: (х1 - 7)/2 = -3 (у1 - 5)/2 = -4 х1 - 7 = -6 у1 - 5 = -8 х1 = 1 у1 = -3 Тогда точка А будет иметь координаты А(1; -3).
Пусть точка С имеет координаты С(х2; у2) По такому же принципу составлчпм два уравнения: (х2 + 1)/2 = -4 (у2 - 3)/2 = -2 х2 + 1 = -8 у2 - 3 = -4 х2 = -9 у2 = -1 Значит, точка С будет иметь координаты С(-9; -1).
Теперь находим координаты точки L(х3; у3) х3 = (-7 -9)/2. у3 = (-1 - 5)/2 х3 = -8 у3 = -3 Значит, точка L имеет координаты L(-8; -3)
Длина отрезка AL = √(1 + 8)² + (-3 + 3)² = √9² + = √81 = 9.
Т.к. М - середина отрезка АВ, то она будет иметь координаты М((х1 - 7)/2; ((у1 - 5)/2))
Известно, что точка М имеет координаты М(-3; -4). Тогда приравниваем координаты точки М с неизвестными х1 и у1:
(х1 - 7)/2 = -3 (у1 - 5)/2 = -4
х1 - 7 = -6 у1 - 5 = -8
х1 = 1 у1 = -3
Тогда точка А будет иметь координаты А(1; -3).
Пусть точка С имеет координаты С(х2; у2)
По такому же принципу составлчпм два уравнения:
(х2 + 1)/2 = -4 (у2 - 3)/2 = -2
х2 + 1 = -8 у2 - 3 = -4
х2 = -9 у2 = -1
Значит, точка С будет иметь координаты С(-9; -1).
Теперь находим координаты точки L(х3; у3)
х3 = (-7 -9)/2. у3 = (-1 - 5)/2
х3 = -8 у3 = -3
Значит, точка L имеет координаты L(-8; -3)
Длина отрезка AL = √(1 + 8)² + (-3 + 3)² = √9² + = √81 = 9.
α =β =1 ⇒4x +1 =0 ⇔ x = -1/4 .
α = - β =1⇒2y - 3/2 =0 ⇔ y = 3 /2 .
* * * x = -1/4 и y = 3/2 * * *
M₀( -1/4 ; 3 /2) центр пучка прямых
y -y₀ =k(x -x₀) ⇔y -3/2 =k*(x +1/4) .
Любые две прямые : 1) y - 3/2 =k*(x +1/4) и 2) y - 3/2 = (- 1/k)*(x +1/4) .
можно задавать например:
a) k = -2 ⇒ 2x+y -1 =0 и 4x -8y +13 =0 .
b) k = 2 ⇒ 2x -y +2 0 и 4x +8y -11= 0
2. Найдите каноническое уравнение прямой : {x+y -2 = 0 ;y - z +1 =0 .
(x - x₁) / (x₂-x₁) = (y - y₁) / (y₂-y₁) = (z - z₁) / (z₂ - z₁) ;
Выбираем две точки : M₁(1; 1; 2 ) , M₂(2; 0; 1 )
(x - 1) / (2 -1) = (y - 1) / (0 -1) = (z - 2) / (1 - 2) ⇔
(x - 1) / 1 = (y - 1) / (-1) = (z - 2) / ( -1) .