Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).
Пусть ромб АВСD. Высота ВН Смежные углы ромба в сумме равны 180°. Значит <A=180°-120°=60°. В прямоугольном треугольнике АВН угол АВН=30° (сумма острых углов равна 90°). Против угла 30° лежит катет (отрезок 12см), равный половине гипотенузы (стороны ромба). Значит сторона равна 24см. Тогда периметр равен 96см (у ромба 4 равных стороны). Диагонали ромба взаимно перпендикулярны, являются биссектрисами углов ромба и точкой пересечения О делятся пополам. В треугольнике АВD стороны АВ и AD равны (стороны ромба), а угол при вершине равен 60°. Значит треугольник равносторонний и меньшая диагональ равна стороне ромба, то есть 24см. ответ: сторона 24см, периметр 96см, меньшая сторона 24см.
Смежные углы ромба в сумме равны 180°.
Значит <A=180°-120°=60°.
В прямоугольном треугольнике АВН угол АВН=30° (сумма острых углов равна 90°). Против угла 30° лежит катет (отрезок 12см), равный половине гипотенузы (стороны ромба). Значит сторона равна 24см.
Тогда периметр равен 96см (у ромба 4 равных стороны).
Диагонали ромба взаимно перпендикулярны, являются биссектрисами углов ромба и точкой пересечения О делятся пополам.
В треугольнике АВD стороны АВ и AD равны (стороны ромба), а угол при вершине равен 60°. Значит треугольник равносторонний и меньшая диагональ равна стороне ромба, то есть 24см.
ответ: сторона 24см, периметр 96см, меньшая сторона 24см.