бічна сторона рівнобедреного трикутника дорівнює 17см, а висота проведена до основи - 8см. Получим треугольник прямоугольный с катетом 8 см, а гипотенузой 17 см.(получается два равных треугольника, будем рассматривать один из них). По теореме Пифагора найдем второй катет: 17²-8²=289-64=225=15².
Отметим угол при основании α, Противолежащим катетом углу α будет
катет 8см, а прилежащим к углу α катетом будет катет 15 см, гипотенуза 17 см. по определению тригонометрических функций :
sin α= 8/17
cos α=15/17
tg α=8/15
ctg α=15/8
Объяснение:
бічна сторона рівнобедреного трикутника дорівнює 17см, а висота проведена до основи - 8см. Получим треугольник прямоугольный с катетом 8 см, а гипотенузой 17 см.(получается два равных треугольника, будем рассматривать один из них). По теореме Пифагора найдем второй катет: 17²-8²=289-64=225=15².
Отметим угол при основании α, Противолежащим катетом углу α будет
катет 8см, а прилежащим к углу α катетом будет катет 15 см, гипотенуза 17 см. по определению тригонометрических функций :
sin α= 8/17
cos α=15/17
tg α=8/15
ctg α=15/8
Бисектриса прямого угла прямоугольного треугольника делит гіпотенузу на отрезки 40 см и 30 см. Найдите периметр треугольника.
Обозначим треугольник АВС; СК - биссектриса. АК=30 см, ВК=40 см.
Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон. (свойство). АК:ВК=30:40=3:4. =>
АС:ВС=3:4. Из отношения катетов видно, что треугольник АВС - так называемый «египетский» с отношением сторон 3:4:5. .
Примем коэффициент отношения равным а.
Тогда АС=3а, ВС=4а, гипотенуза АВ=5а.
АВ=АВ+ВК=30+40=70 (см) => а=70:5=14(см).
Р=3а+4а+5а=12а
Р=12•14=168 (см)