1) 5+10 = 15 см - длина АВ
2) 15²-12²=ВС². (По теореме Пифагора) 225-144=81, ВС =√81=9 см (ВС=9 см)
3) Площ. АВС находим так (АС*ВС)÷2 , т.е. (12*9)÷2=54 см²
Теперь надо найти площ. треугольника МВК и вычесть ее из площ. АВС.
4) Т.к. углы АСВ и МКВ - прямые, а АВ=10 см, что составляет 2/3 от АВ, то ВК равно 2/3 от ВС, т.е. 6 см. ВК=6 см.
5) По теор. Пифагора МВ²-ВК²=МК², т.е 100-36=64, МК-√64=8 см
6) Площ. МВК находим так (МК*ВК)÷2 , т.е. (8*6)÷2= 24 см²
7) Площ. четырехугол. АМКС = 54-24=30 (30 см²)
Объяснение:
1) равновеликий значит, что площади равные. S = 8 × 20 и в то же время S = a × 16
8 × 20 = a × 16
a = 10
2)d1 = 8^2 + 20^2 = 464
d2 = 10^2 + 16^2 = 356
Нет
3)треугольник АНВ прямоугольный с А = 45 градусов, значит АНВ ещё и равнобедренный, то есть АН = НВ = 6
АС = 15
S = 1/2 × 15 ×6 = 45
4)P = 2x + 14 + 26 = 60. Отсюда 2x = 20, x = 10
боковая сторона равна 10.
S = полусумма оснований умноженая на высоту
высоту найдём из прямоугольного треугольника
h = 100 - 36 = корень из 64 = 8
S = (14 + 26)/2 × 8 = 160
1) 5+10 = 15 см - длина АВ
2) 15²-12²=ВС². (По теореме Пифагора) 225-144=81, ВС =√81=9 см (ВС=9 см)
3) Площ. АВС находим так (АС*ВС)÷2 , т.е. (12*9)÷2=54 см²
Теперь надо найти площ. треугольника МВК и вычесть ее из площ. АВС.
4) Т.к. углы АСВ и МКВ - прямые, а АВ=10 см, что составляет 2/3 от АВ, то ВК равно 2/3 от ВС, т.е. 6 см. ВК=6 см.
5) По теор. Пифагора МВ²-ВК²=МК², т.е 100-36=64, МК-√64=8 см
6) Площ. МВК находим так (МК*ВК)÷2 , т.е. (8*6)÷2= 24 см²
7) Площ. четырехугол. АМКС = 54-24=30 (30 см²)
Объяснение:
1) равновеликий значит, что площади равные. S = 8 × 20 и в то же время S = a × 16
8 × 20 = a × 16
a = 10
2)d1 = 8^2 + 20^2 = 464
d2 = 10^2 + 16^2 = 356
Нет
3)треугольник АНВ прямоугольный с А = 45 градусов, значит АНВ ещё и равнобедренный, то есть АН = НВ = 6
АС = 15
S = 1/2 × 15 ×6 = 45
4)P = 2x + 14 + 26 = 60. Отсюда 2x = 20, x = 10
боковая сторона равна 10.
S = полусумма оснований умноженая на высоту
высоту найдём из прямоугольного треугольника
h = 100 - 36 = корень из 64 = 8
S = (14 + 26)/2 × 8 = 160