А) Радиус основания цилиндра равен 2,6 см, а образующая – 4,8 см. На каком расстоянии от оси цилиндра находится его сечение – квадрат
параллельное оси?
б) Сечение цилиндра плоскостью, параллельной его оси, является квадратом, площадь которого равна 144 см“, и удалено от оси на 8 см. Найдите радиус основания цилиндра
84°
Объяснение:
Дано: АВСD - четырехугольник;
∠BAC=∠CAD=60°; ∠ACD=24;
AB+AD=AC.
Найти: ∠АВС
Продлим сторону АВ на отрезок ВЕ=АD.
1. Рассмотрим ΔАЕС.
AB+AD=AC
АВ+ВЕ=АЕ
Так как АD=ВЕ (по построению), то
АС=ВЕ
⇒ ΔАЕС - равнобедренный.
Углы при основании равнобедренного треугольника равны.⇒ ∠АСЕ=∠АЕС.
Сумма углов треугольника равна 180°.⇒ ∠АСЕ=∠АЕС=(180°-∠ЕАС):2=(180°-60°):2=60°
⇒ ΔАЕС - равносторонний ⇒ АЕ=ЕС=АС
2. Рассмотрим ΔВЕС и ΔАСD.
АС=ЕС (п.1); АD=ВЕ (построение)
∠САD=∠АЕС=60° (п.1)
⇒ ΔВЕС и ΔАСD (по 1 признаку)
∠ЕСВ=∠АСD=24° (как соответственные элементы)
3. Рассмотрим ΔВЕС.
Сумма углов треугольника равна 180°.⇒∠ЕВС=180°-(∠ВЕС+∠ЕСВ)=180°-(60°+24°)=96°
Сумма смежных углов равна 180°.⇒ ∠АВС=180°-∠ЕВС=180°-96°=84° (смежные)
Решение
Площадь боковой поверхности призмы равна произведению ее высоты на периметр основания.
Сумма углов при одной стороне параллелограмма равна 180°
Следовательно, < АВС = 180° - 30° = 150°
Пусть АВ = 4см
ВС = 4√3 см
Найдем по теореме косинусов диагональ основания АС.
АС² = АВ² + ВС² - 2*АВ*ВС* cos (150°)
косинус тупого угла - число отрицательное.
АС² = 16 + 48 + [32√3*(√3)]/2=112
АС = √112 = 4√7
Высота призмы
СС₁ = АС / ctg(60°)=(4√7) / 1/√3
CC₁ = 4√21
Площадь боковой поверхности данной призмы
S = H*P = 4√21*2(4+4√3) = 32√21*(1+√3) см²
ответ: 32√21*(1+√3) см²