.а) Разделите отрезок СД=4,8см. на две равные части.
б) Дан отрезок АВ=7 см. Постройте окружность, для которой отрезок АВ является диаметром.
2.а) С циркуля и линейки начертите угол АСД=75. Постройте его биссектрису.
б) Начертите произвольный треугольник АВС. Постройте биссектрису АМ
3. Начертите прямоугольный треугольник АВС с прямым углом С. Постройте высоту СК.
4. С циркуля и линейки постройте треугольник по трем сторонам: а=5см, в=4см, с=3см.
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
Следовательно АА₁⊥α, ВВ₁⊥α (смотри прикрепленный рисунок).
Поскольку прямые АА₁ и ВВ₁ перпендикулярны плоскости α, то между собой они параллельны и образуют одну плоскость (через две параллельные прямые проходит плоскость и при чем только одна). Назовем ее β.
Отрезок АВ тоже лежит в плоскости β, т. к. имеет с ней две общие точки (Если две точки прямой (отрезка) лежат в данной плоскости, то и вся прямая (отрезок) лежит в данной плоскости).
Плоскость β пересекает плоскость α по прямой А₁В₁.
Опустим из точки М перпендикуляр на плоскость α.
ММ₁ будет параллельна прямым АА₁ и ВВ₁.
Точка М₁ - точка пересечения ММ₁ с плоскостью α - будет лежать на прямой А₁В₁.
(Это доказывается от противного. Если точка М₁ не лежит на прямой А₁В₁, то ММ₁ пересекает плоскость β. Поскольку ММ₁║АА₁, то и АА₁ тоже будет пересекать плоскость β. Получаем противоречие, т. к. АА₁ лежит в плоскости β. Значит Точка М₁ лежит на отрезке А₁В₁.)
В плоскости β получаем четырехугольник АВА₁В₁, у которого две противоположные стороны параллельны. Следовательно этот четырехугольник - трапеция с основаниями АА₁ и ВВ₁.
Так как основания трапеции перпендикулярны боковой стороне, то трапеция является прямоугольной.
ММ₁ - средняя линия, т.к. М - середина отрезка АВ и параллельна основаниям. Значит и точка М₁ середина стороны А₁В₁.
ответ: ММ₁ = 8 см.