Радиус вписанной окружности в ромб равен высоте, проведенной из центра ромба на его сторону. Пусть сторона ромба с две полудиагонали образуют прямоугольный треугольник АВС с катетами АС и ВС. Найдём сторону ромба (это АС). АС = √(144² + 42²) = √(20736 + 1764) = √22500 = 150. Площадь треугольника можно записать двумя разными как половину произведения катетов и как половину произведения гипотенузы на проведенную к ней высоту h. То есть: h*150 = 42*144. Отсюда искомая величина равна: h = 42*144/150 = 6048 / 150 = 1008 / 25 = 40,32.
Пусть сторона ромба с две полудиагонали образуют прямоугольный треугольник АВС с катетами АС и ВС.
Найдём сторону ромба (это АС).
АС = √(144² + 42²) = √(20736 + 1764) = √22500 = 150.
Площадь треугольника можно записать двумя разными как половину произведения катетов и как половину произведения гипотенузы на проведенную к ней высоту h.
То есть:
h*150 = 42*144.
Отсюда искомая величина равна:
h = 42*144/150 = 6048 / 150 = 1008 / 25 = 40,32.
Объяснение:
1Так как сторона Co=od=ao=Bo и угол BOC и угол AOD Вертикальные следовательно углы равны по двум сторонам и углу между ними
2 так как BA=AD, Угол BAC=УГЛУ AD, И СТОРОНА A общая следовательно треугольники равны по 2 сторонам и углу между ними
3. Угол 2 вертикален углу bda, угол 1 вертикален углу cbd, bdобщая, и ad=bc поэтому треугольники равны по 2 сторонам и углу между ними
4. Ac общая Ab=CD, Угол acd равен углу BAC. Поэтому треугольники равны по 2 сторонам и угу между ними.
5. Ac=bd, угол acd= углу bdc. DC общая поэтому углы равны по 2 сторонам и углу между ними
6. Угол 1 равен углу 2, они смежные следовательно угол cdo=углу abo, bo=od, ab=CD поэтому треугольники равны по 2 сторонам и углу между ними