А) С линейки и транспортира постройте треугольник АВС и укажите его вид, если две стороны равны 5 см и 6 см, а угол между ними 55°.
Б) С линейки и транспортира постройте треугольник АВС и укажите его вид, если сторона АВ равна 4 см, а углы АВС и CAB соответственно равны 50° и 40°.
прямоугольный
остроугольный
тупоугольный
В) С линейки и транспортира постройте треугольник АВС и укажите его вид, если две стороны равны 25 мм и 35 мм, а угол между ними 28°
Г) С линейки и транспортира постройте треугольник АBC и укажите его тип. Cторона BC равна 7 см, а углы АBC и АCB соответственно равны 34° и 59
Объяснение:
отрезок EF, точка С, не лежащая на прямой EF, и точка D,
лежащая на прямой EF. Выясните взаимное расположение прямой
CD и отрезка EF.
[2]
2. Найдите углы, образованные при пересечении двух прямых, если
один из них равен 520.
[2]
3. Точки А, В и С расположены на одной прямой, причем AB=6см,
ВС=14см. Какой может быть длина отрезка АС?
[2]
4
а) Начертите прямой угол ABD;
b) Внутри угла проведите луч ВС;
c) Найдите величину ZABC и CBD , если ZABC на 40°
больше 2CBD.
[3]
5. Один из смежных углов в 4 раза меньше другого .Найдите эти
углы.
[3]
6. На прямой отложены два равных отрезка АС и СВ. На отрезке CB
взята точка D, которая делит его в отношении 2:3, считая от точки С.
Найдите длину отрезков Ac, DB и AB, если CD-14 см.
[3]
7. Ланы два угла лов и DOC с общей вершиной. Угол DOC
расположен внутри угла лов. Стороны одного угла
перпендикулярны к сторонам другого. Найдите эти углы, если
разность между ними равна прямому углу,
(5)
1) По теореме Пифагора:
ответ: .
2) По теореме Пифагора:
.
ответ: 8.
3) Диагональ квадрата равна произведению его стороны на , тогда:
ответ: .
4) По теореме Пифагора:
.
Площадь прямоугольного треугольника равна полупроизведению его катетов.
.
ответ: 6; 24.
5) Треугольник равнобедренный (по условию). В равнобедренном треугольнике высота является биссектрисой и медианой. Образовавшиеся два треугольника являются прямоугольными. По теореме Пифагора:
ответ: .
6) Катет, лежащий напротив угла с градусной величиной 30°, равен половине гипотенузы. Пусть - гипотенуза этого треугольника. По теореме Пифагора:
Больше сделать здесь ничего нельзя, поскольку длина гипотенузы нам не дана. Но если бы она была дана, то длину катета можно было бы вычислить через эту формулу.