За теоремою про паралельні прямі <C=<A=20°=>CM||AK.
4)1. Будуємо перпендикуляр;
2. Будуємо кут;
3.Від одного променя кута будуємо гіпотенузу;
4.Візьми кут 45°! Виміряємо кут з верхньої вершини гіпотенузи, також 45°;
5.Будуємо катети.
3) EH—бісектриса, тому <MEH=<AEH=30°. За властивістю катета, який лежить напроти кута 30°:EH=MH*2=6*2=12(см). Розглянемо трикутник EHA: за властивістю рівнобедреного трикутника(кут при основі рівні <AEH=<EAH=30°):EH=AH=12см.
Площадь параллелограмма равна произведению стороны и высоты, проведенной к этой стороне. Пусть одна сторона равна х см, тогда вторая будет равна (х + 2) см. С одной стороны площадь параллелограмма равна (х ·20) см². С другой стороны - (х + 2) · 16 см². Замечу, что меньшая сторона умножается на большую высоту и наоборот. Т.к. это площадь одного и того же параллелограмма, то приравняем эти выражения и решим получившееся уравнение: 20х = 16(х + 2) 20х = 16х + 32 20х - 16х = 32 4х = 32 х = 8 Значит, меньшая сторона равна 8 см, а большая - 10 см. Площадь параллелограмма равна 20 · 8 = 160 (см²) ответ: 160 см².
1)Розглянемо трикутник CPM:<P=90°,<C=20°=> <M=70°.
У трикутнику KPA:<P=90°,<K=70°=> <A=20°.
За теоремою про паралельні прямі <C=<A=20°=>CM||AK.
4)1. Будуємо перпендикуляр;
2. Будуємо кут;
3.Від одного променя кута будуємо гіпотенузу;
4.Візьми кут 45°! Виміряємо кут з верхньої вершини гіпотенузи, також 45°;
5.Будуємо катети.
3) EH—бісектриса, тому <MEH=<AEH=30°. За властивістю катета, який лежить напроти кута 30°:EH=MH*2=6*2=12(см). Розглянемо трикутник EHA: за властивістю рівнобедреного трикутника(кут при основі рівні <AEH=<EAH=30°):EH=AH=12см.
AM=MH+AH=6+12=18(см).
2)<KEM=180°-(<MKE+<KME) ?
не знаю, как-то так
Пусть одна сторона равна х см, тогда вторая будет равна (х + 2) см.
С одной стороны площадь параллелограмма равна (х ·20) см².
С другой стороны - (х + 2) · 16 см².
Замечу, что меньшая сторона умножается на большую высоту и наоборот.
Т.к. это площадь одного и того же параллелограмма, то приравняем эти выражения и решим получившееся уравнение:
20х = 16(х + 2)
20х = 16х + 32
20х - 16х = 32
4х = 32
х = 8
Значит, меньшая сторона равна 8 см, а большая - 10 см.
Площадь параллелограмма равна 20 · 8 = 160 (см²)
ответ: 160 см².