А) Запишите 2 луча, имеющиеся на рис.1 Б) Запишите 2 отрезка, имеющиеся на рис.1 В) Запишите 2 прямые, имеющиеся на рис.1 номер 2 КР=10,5см и если КС=4/7КР, то найдите длину КС и СР
ЛЮДИ СОР ПО ГЕОМЕТРИИ
СРАЗУ ГОВОРЮ Д@УНАМ КОТОРЫЕ ПИШУТ ВСЯКУЮ ЕРУНДУ ЛИШЬ БЫ ХАЛЯВНО ПОЛУЧИТЬ Я БУДУ КИДАТЬ ЖАЛОБУ ( ˘ ɜ˘)
на СД отметим середину Е. МЕ//ВС//АД=10см соеденим МС и найдем ее длину МС гипатенуза прямоугольного треугольника ВСМ МС= √(10^2+5^2)= √125
радиус окружности с центром М что бы она касалась прямой СД будет равна МЕ. МЕ=10см
что бы не имела с прямой СД общих точек то радиус круга меньше МЕ и больше МС. от этого получаем пусть радиус круга будет (х) х> 0, х <МЕ то есть х <10 и х>МС то есть х> √125 ответ изобразим так (0; 10)&(125;+○○) что бы имел с СД две общие точки радиус круга так же (х) будет х> МЕ и х <МС то есть 10 <х < √125 (10; √125)
Если пирамида правильная - то её вершина проецируется в центр основы - это точка пересечения медиан (они же и высоты и биссектрисы). Проекция бокового ребра на основу равна 2/3 высоты основы, а вся высота h равна 3/2 этой проекции: h = (3/2)*8*cos 30°= 12*(√3/2) = 6√3 см. Сторона а основания равна: а = h/cos 30° = 6√3/(√3/2) = 12 см. Периметр Р основы равен: Р =3а = 3*12 = 36 см. Находим апофему А боковой грани - это высота в равнобедренном треугольнике с боковыми сторонами по 8 см и основанием 12 см. А = √(8²-(12/2)² = √(64-36) = √28 = 2√7 см. Площадь Sбок боковой поверхности равна: Sбок = (1/2)Р*А = (1/2)*36*2√7 = 36√7 см². Площадь Sо основания - равностороннего треугольника - равна: Sо = (а²√3)/4 = 144√3/4 = 36√3 см². Площадь S полной поверхности пирамиды равна: S = Sо + Sбок = 36√3+36√7 = 36(√3+√7) ≈ 157,6009 см².
МЕ//ВС//АД=10см
соеденим МС и найдем ее длину
МС гипатенуза прямоугольного треугольника ВСМ
МС= √(10^2+5^2)= √125
радиус окружности с центром М что бы она касалась прямой СД будет равна МЕ. МЕ=10см
что бы не имела с прямой СД общих точек то радиус круга меньше МЕ и больше МС. от этого получаем пусть радиус круга будет (х)
х> 0, х <МЕ то есть х <10 и х>МС то есть х> √125 ответ изобразим так
(0; 10)&(125;+○○)
что бы имел с СД две общие точки
радиус круга так же (х) будет х> МЕ и х <МС то есть 10 <х < √125 (10; √125)
Проекция бокового ребра на основу равна 2/3 высоты основы, а вся высота h равна 3/2 этой проекции:
h = (3/2)*8*cos 30°= 12*(√3/2) = 6√3 см.
Сторона а основания равна: а = h/cos 30° = 6√3/(√3/2) = 12 см.
Периметр Р основы равен: Р =3а = 3*12 = 36 см.
Находим апофему А боковой грани - это высота в равнобедренном треугольнике с боковыми сторонами по 8 см и основанием 12 см.
А = √(8²-(12/2)² = √(64-36) = √28 = 2√7 см.
Площадь Sбок боковой поверхности равна:
Sбок = (1/2)Р*А = (1/2)*36*2√7 = 36√7 см².
Площадь Sо основания - равностороннего треугольника - равна:
Sо = (а²√3)/4 = 144√3/4 = 36√3 см².
Площадь S полной поверхности пирамиды равна:
S = Sо + Sбок = 36√3+36√7 = 36(√3+√7) ≈ 157,6009 см².